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PREFACE

The theory of numbers, one of the oldest branches of mathematics,
has engaged the attention of many gifted mathematicians during the
past 2300 years. The Greeks, Indians, and Chinese made significant
contributions prior to 1000 A.p., and in more modern times the sub-
ject has developed steadily since Fermat, one of the fathers of Western
mathematics. It is therefore rather surprising that there has never
been a strong tradition in number theory in America, although a few
men of the stature of L. E. Dickson have emerged to keep the flame
alive. But in most American universities the theory of numbers is
regarded as a slightly peripheral subject, which has an unusual flavor
and unquestioned historical importance, but probably merits no more
than a one-term course on the senior or first-year graduate level. It
seems to me that this is an inappropriate attitude to maintain toward
a subject which is flourishing in European hands, and which has
contributed so muech to the mathematics of the past and which
promises exciting developments in the future. Changing its status is
complicated, however, by the paucity of advanced works suitable
for use as textbooks in American institutions. There are several
excellent elementary texts available, and an ever-increasing number
of monographs, mostly European, but to the best of my knowledge
no general book designed for a second course in the theory of numbers
has appeared since Dickson ceased writing. In Volume II of the
present work I have attempted partially to fill this gap. .

When I began to write Volume II, tiie number of introductory
texts was very small, and no one of them contained all the informa-
tion I found occasion to refer to. Since I had already written lecture
notes for a first course, there seemed to be some advantage in expand-
ing them into a more complete exposition of the standard elementary
topics. Volume I is the result; it is designed to serve either as a self-
cont.ained textbook for a one-term course in number theory, or as a
prehminary to the second volume. The two volumes together are
u}tended to provide an introduction to some of the important tech-
mques'and results of classical and modern number theory; I hope
they }v1ll prove useful as a first step in the training of students who are
or might become seriously interested in the subject.

v



vi PREFACE

In view of the diversity of problems and methods grouped together
under the name of number theory, 1t 15 clearly smpossible to wnte
even an mtroductory treatment which 1n any sense covers the field
completely My choice of topies was made partly on the basis of my
own taste and knowledge, of course, but also more objectively on the
grounds of the technical smportance of the methods developed or of the
results obtamed It was this consideration which led me, for example
to give a standard function-theoretic proof of the Prime Number
Theorem 1n the second volume the analytic method has proved to
be ly powerful and 15 appheable to 8 large vanety of problems,
50 that 1t must be considered an essential tool 1n the subject, while
the elementary Erdos Selberg method has found only hmited apphea-
tions, and so for the tsme being must be regarded as an isolated
device, of great interest to the specialist but of secondary mmportance
to the beginner

In & sunlar vem, I have on several occasions given proafs which
are nerther the shortest nor most elegant known but which seem to
me to be the most natural, or to lead to the deepest understanding of
the phenomena under consideration For example, the proof given
1n Chapter 8, Volume I, of Hurwitz' theorem on the approximation
of an arrational number by rationals 1s perhaps not as elegant 2s some
others known but of those which make no use of continued fractions,
1t 13 the only one I am famulier wrth which does not require pinor
knowledge of the special role played by the number v3 Tomy
rund these other proofs are infertor pedagogreally, 1o that they give
no hunt as to how the student mght attack a sumilar problem

Most of the matenal m the first volume 1s regularly meluded 1
vartous elementary courses, although 1t would probably be impossible
to cover the entire volume m one semester Thus allows the mstructor
to choose topres to suit hus taste and what 1s even more 1mportant
for my general purpose, 1t presents the student with an opportunity
for further reading 1n the subject

I consider the first volume suitable for presentstion to advanced
undergraduate and begmning graduate students msofar as the dif-
ficulty of the subject matter 15 concerned  No technical knowledge
13 assumed except i Section 3-5 and 1 Chapter 6 where caleulus 1s
used  On the other hand elementary number theary 1s by no means
easy, and that vaguely defined quality called mathematical matunty
1s of great value 1o developmg & sound feeling for the subject. I
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doubt, though, that it should be considered a prerequisite, even if it
could be measured; studying number theory is perhaps as good a
way as any of acquiring it.

Rather few of the problems occurring at the ends of sections are
of the routine computational type; I assume that the student can
devise such problems as well as I. It has been my experience that
many of those included offer some difficulty to most students. For
this reason I have appended hints in profusion, and have indicated
by asterisks a few problems that remain more difficult than the
average.

The development of continued fractions in the final chapter may be
sufficiently novel to warrant a word of explanation. I have chosen to
regard as the basic problem that of finding the ‘‘good” rational ap-
proximations to a real number, and have derived the regular con-
tinued fraction as the solution. This procedure seems to me to be
pedagogically better than the classical treatment, in which one
simply defines a continued fraction and verifies that the convergents
have the requisite property. Moreover, this same approach looks
promising for the corresponding problem of approximating complex
numbers by the elements of a fixed quadratic field, while earlier
attempts to define a useful complex continued fraction algorithm
have been conspicuously unsuccessful. The idea of associating an
interval with each Farey point is derived from work by K. Mahler,
who, with J. W. 8. Cassels and W. Ledermann, investigated the much
more complicated Gaussian case [Philosophical Transaclions of the
Royal Society, A (London) 243, 585-628 (1951)).

I am grateful to Professors T. Apostol, A. Brauer, B. W. Jones, and
K. Mahler for their many constructive criticisms, to Mrs. Edith Fisher
for her help in typing the manuscript, and to Mr. Earl Lazerson for
his invaluable aid in proofreading,

W. J. L
Ann Arbor, Michigan
November, 1955
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CHAPTER 1
INTRODUCTION

1-1 What is number theory? In number theory we are concerned
with properties of certain of the integers

., =8, —-2,-1,0,1,2,3,...,

or sometimes with those properties of the real or complex numbers
which depend rather directly on the integers. As in most branches of
abstract thought, it is easier to characterize the theory of numbers
extensively, by giving a large number of examples of problems which
are usually considered parts of number theory, than to define it
intensively, by saying that exactly those problems having certain
characteristics will be included in the subject. Before considering
such a list of types of problems, however, it might be worth while to
make an exclusion.

In the opinion of the author, the theory of numbers does not include
the axiomatic construction or characterization either of systems of
numbers (integers, rational numbers, real numbers, or complex
numbers) or of the fundamental operations and relations in these
sets. Toward the end of this chapter, a few properties of the integers
are mentioned which the student may not have considered explicitly
before; aside from these, no properties will be assumed beyond what
any high-school pupil knows. It is, of course, quite possible that the
student will not have read a logical treatment of elementary arith-
metic; if he wishes to do so, he might examine E. Landau’s elegant
Foundations of Analysis (New York: Chelsea Publishing Company,
1951), but he should not expect to find a treatment of this kind
here. The contents of such a book are, in a sense, assumed to be
known to the reader, but as far as understanding number theory is
concerned, this assumption is of little consequence.

The problems treated in number theory can be divided into groups
according to a more or less rough classification. First, there are
fnultiplicative problems, concerned with divisibility properties of the
ntegers. It will be proved later that any positive integer n greater
than 1 can be represented uniquely, except for the order of the factors,

1



2 INTRODUCTION [enar 1

asa product of primes, a prame bemng any nteger greater than 1 having
no exact divisors except 1tself and 1 This maght almost be termed
the Fundamental Theorem of number theory, so mamfold and varied
are its appl From the d: of n into prumes, 1,18
easy to determine the number of divisors of n This number 15 called
7(n) by some writers and d(n) by others, we shall use the former
destgnation  The behavior of r(r) 1s very erratie, the first few values
are as follows

n |1(n) n_Jr(n)
1|1 1B | 2
2 | 2 14
3|2 151 4
4|3 16 | 5
5| 2 17 | 2
6 | 4 1816
702 19 |2
8 | 4 0 |6
913 21 | 4
10| 4 22 | 4
n |z 23 | 2
12 |6 21 | 8

Iin =2 thednwsorsofnarel 2 22, 27, sothat r(27) = m +1
On the other hand, if # 15 a prime then 7{n) = 2 Since, as we shall
see, there are mfimtely many primes, 1t appears that the r-function
has arbitranly large valucs, and yet has the value 2 for mfimtely
many = Many questions might occur to anyone who thinks about
the subject for a few moments and studies the above table For
example,

(a) Is it true that r(n) 1s odd if and only if 7 15 2 square?

(b) Is1t alnays true that if m and n have no common factor, then
(m)r(n) = r(mn)?

(¢) Do the arguments of the form 2™ give the relatnely largest
values of the r-function? That 15 15 the inequality

logn
) < fos 2 +1

correet for alt n? If not, 1s there any better upper bound than the
trivial one, r(n) < n?
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(d) How large is v(n) on the average? That is, what can be said

about the quantity
1 N
N ngl T (n):

as N increases indefinitely?

(e) For large N, approximately how many solutions n < N are
there of the equation 7(n) = 2? In other words, about how many
primes are there among the integers 1, 2, ..., N?

Of the above questions, which are fairly typical problems in
multiplicative number theory, the first is very easy to answer in the
affirmative. The next three are more difficult; they will be considered
in Chapter 6. The last is very difficult indeed. It was conjectured
by C. F. Gauss and A. Legendre, two of the greatest of number
theorists, that the number = (N) of primes not exceeding N is approxi-
mately N/log N, in the sense that the relative error

lT@V) = (N/log N)| _ | «(N)
N/log N " |N/log N

is very small when N is sufficiently large. Many years later
(1852-54), P. L. Chebyshev showed that if this relative error has any
limiting value, it must be zero, but it was not until 1896 that J. Hada-
mard and C. de la Vallée Poussin finally proved what is now called the
Prime Number Theorem, that

m(N)

lim ———==1

New N/log N

In another direction, we have the problems of additive number
theory: questions concerning the representability, and the number of
representations, of a positive integer as a sum of integers of a specified
kind. For instance, upon examination it appears that some integers,
like 5 = 1% + 2% and 13 = 2% + 32, are representable as a sum of
two squares, while others, like 3 or 12, are not. Which integers are
so representable, and how many such representations are there?

A third category might include what are known as Diophantine
equations, named after the Greek mathematician Diophantos, who
first studied them. These are equations in one or more variables
whose solutions are required to be integers, or at any rate rational
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numbers For example, 1t 1s a famiiar fact that 3% + 4% = 5,
which gives us a solution of the Diophantine equation ° + 42 = 2%
Grving 8 partcular solution 1s hardly of interest, what 1s desired 35 an
exphiett formula for all solutions A very famous Diophantme
equation 1s that known as Fermat's equation 2" -+ " =2"
P Fermat asserted that this equation has no solution {(in nonzero
1ntegers, of course) 1f n > 3, the assertion has never been proved or
disproved for general n  There 15 at present practically no general
theory of Diophantine equations although there are many special
methods, most of which were devised for the solution of particular
equations

Funally, there are probl 1n Dopk For
example, mven a real number £ and a positive mteger N, find that
rational number p/g for which ¢ £ N and )§ — (p/g)] 18 mnima)
The proofs that ¢ and  are transcendental also fall in this category
This branch of number theory probably borrows the most from, 2ad
contnbutes the most to other branches of mathematics

‘The theorems of number theory can also be subdwided along
entirely different lmes—for example according to the methods used
1n their proofs  Thus the dich of el y and )
tary, analytic and synthetic A proof is said to be elementary
(although not necessanly simple!) if 1t makes no use of the theory of
functions of a complex vanable nnd synthetic if 1t does not mvolve
the usual concepts of ly
but not alsays the nature of the cheorem shows ﬁmt the proof will
be m one or another of these categories For example the above-
mentioned theorem about w7(z) s clearly a theorem of analytie
number theary but 1t was not until 1948 that an elementary proof
was found  On the other hand, the followtng theorem first proved
by D Hilbert, mvolves in 1ts statement none of the concepts of
analysis yet the only proofs known prior to 1942 were analytic
Given any positive mteger k there 13 another integer s depending
only on k such that every positive integer 13 representable as the sum
of at most s kth powers, 1€ such that the equation

n=zt4+ 4zt

13 solvable 1n non-negative integers 21 , Za for every n
Tt may seem strange at first that the theory of functions of a com-
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plex variable is useful in treating arithmetic problems, since there is,
prima facie, nothing common to the two disciplines. Even after we
understand how function theory can be used, we must still reconcile
ourselves to the rather disquieting thought that it apparently must
be used in some problems—that there is, at present, simply no other
way to deal with them. What is perhaps not a familiar fact to the
general reader is that function theory is only one of many branches
of mathematics which are at best only slightly related to number
theory, but which enter in an essential way into number-theoretic
considerations. This is true, for example, of abstract algebra, prob-
ability, Euclidean and projective geometry, topology, the theory of
Fourier series, differential equations, and elliptic and other auto-
morphic functions. In particular, it would appear that the rather
common subsumption of number theory under algebra involves a
certain distortion of the facts.

1-2 Proofs. It is a well-known phenomenon in mathematics that
an excessively simple theorem frequently is difficult to prove (al-
though the proof, in retrospect, may be short and elegant) just
because of its simplicity. This is probably due in part to the lack
of any hint in the statement of the theorem as to the machinery to be
used in proving it, and in part to the lack of available machinery.
Since many theorems of elementary number theory are of this kind,
and since there is considerable diversity in the types of arguments
used in their proofs, it might not be amiss to discuss the subject
briefly.

First a psychological remark. If we are presented with a rather
large number of theorems bearing on the same subject but proved by
quite diverse means, the natural tendency is to regard the techniques
used in the various proofs as special tricks, each applicable only to
the theorem with which it is associated. A technique ceases to be a
trick and becomes a method only when it has been encountered enough
times to seem natural; correspondingly, a subject may be regarded
as a “bag of tricks” if the relative number of techniques to results is
too high. Unfortunately, elementary number theory has sometimes
been regarded as such a subject. On working longer in the field,
however, we find that many of the tricks become methods, and that,
there is more uniformity than is at first apparent. By making a
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conscious effort to abstract and retamn the germs of the proofs that
follow, the reader will begini €0 see patterns emerging sooner than he
othermise might

Consider, for example, the assertion that 7(n) 13 even unless n1s &
square, 1¢, the square of another integer A proof of this 1s as
follons If & 18 a divisor of , then so 13 the mtegern/d Ifnisnota
square, then d ¢ n/d, since otherwise n = ¢ Hence 1f 7 13 not &
square, 1ts divisors can be paired off into couples d, n/d, 8o that each
divisor of 7 occurs Just once 23 an element of some one of these
couples 'The number of divisors 1s therefore twice the number of
couples and bemng twice an mnteger, 1s even

The prineiple here 1s that when we want to count the integers hav-
mg a certan property (here ““count may also be replaced by “add”),
1t may be helpful first to group them m Judicious fashuon  There are
several problems 1n the present book whose solutions depend on this
1dea

In addition to the specil methods approprate to number theory,
we shalt have many occasions 0 use two quite general types of proaf
with which the student may not have had much experience proofs
by contradiction and proofs by mduction

An assertion P 18 said to have been proved by contradiction of it
has been shown that by assurmng P false we ean deduce an assertion
Q which 1s known to be mcorrect or which contradicts the assumption
that P s false As an example consider the theorem (known as
early as the time of Euchd) that there are infimitely many prime num-
bers To prove this by contradiction we assume the oppasite
namely that there are only fimitely many primes Let these be
D1, P2 1 Px, let N be the mteger pyp, e -+ 1, and let  be the
assertion that N 1s dwisible by some prime different from any of
o1 P2y , 2x Now N s dnsible by some prime p (f N 1s itself
prime, thenp = N), and N 1snot divisible by any of the py p;
since each of these primes leaves a remainder of 1 when divided nto
& Hence Qistrue  Smee Q15 not compatibie with the falsity of the
theorem the theorem 1s true.

As for proofs by mduction let P(n) be a statement mvolving an
mtegral variable 7, we wish to prove that P(n) 15 vald for every
integer 1 not less than a particular one say n, The mduction
principle says that of P(np) 15 vahd andf forevery n > np one can
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deduce P(n 4 1) by assuming that P(n) is valid, then P(n) is valid
for every integer n > ng. The statement P(ny) must, of course, be
proved independently; usually, though not always, by direct verifica~
tion. The difficulty, if any, normally lies in showing that P(n)
implies P(n + 1).

As an example, let us undertake to prove that the formula

_ aln +1)

1+24 - +mn >

(1)
is correct, whatever the positive integer n may be. Here ng = 1.
There are three steps:

(a) Show that the formula is correct when n = 1. This is trivial
here.

(b) Show that if n is an integer for which (1) holds, the same is
true of n + 1. Butif (1) holds, then adding n + 1 to both sides gives

n(n;—1)+n+1= (n+1)2(n+2),

and this is simply (1) with n replaced by » + 1, so that P(n) implies
Pn 4+ 1).

(¢) Use the principle of induction to deduce that (1) holds for
every positive integer n.

As a second example, consider the Fibonacci sequence

1,23,58,13,21,...,

1424 +a4+ (n+1) =

in which every element after the second is the sum of the two numbers
immediately preceding it. If we denote by u, the nth element of this
sequence, then the sequence is recursively defined by the conditions

u =1,
Uy = 2,
Un = Up_1 + Un_g, n > 3. (2)
We may verify, for as large n as we like, that
un < ()

To prove this for all positive integral n, we take for P (n) the following
statement: the inequalities
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w< ) and  uap < @)
hold This 1s clearly equivalent to the earlier statement We repeat
the three steps
(2) For n = 1, P(n) reduces to the assertton that 1 < and
2< @y
(b) The inductton hypothes:s now 1s that u, < (F)* and
Ung1 < (3)"H, where n 13 2 positive Integer Since n + 2 > 3, we
have that
Untz = Ung1 T Un,
by (2) Hence
e < P+ D= DA+ H <@ =@
and this irequality, together with the induction hypothesis, shows that,
Uppr < P and  wege < P,
so that P(n) mphes P(n + 1)
{c) By the mduction principle, 1t follows that the wmequality (3)
holds for all positive ntegral n
To avoud the artificial procedure of the last proof, 1t 1s frequently
convenient to use the folloning formulation of the prineiple of 1ndue-~
tion, which can be shown to be equivalent to the first f P(ng) 1s
vahd, and of for every # 2> nq the propositions P(ng) Plng + 1},
, P(n) together mply P(n + 1), then P(n) 1s vald for every
n2Zmno
Usmg this formulation, we could have taken P(n) to be the asser
ton 4, < (§)* m the second example
Besides the prineiple of induction, we shall have occasion to use
three other properties of imntegers which the reader may not have
encountered expheitly before
(a) Every nonempty set of positive integers {or of non-negative
1ntegers) has a smallest element
(b) If a and b are positive mtegers there exists a positive mteger n
such that na > b
(¢} Letn be a positive integer If a set of n + 1 elements 18 sub~
diided 1to n or fener subsets, m such a way that each element
belongs to precisely one subset, then some subset contains more then
one element
These asserttons, which are consequences of the underlying axioms,
will be assumed without proof
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PROBLEMS

1. Show that 7(n) is odd if n is a square.
2. Prove that
2 1 oo am+1D2n41)
(a)Zm=7&i-——), b)) ¥ m?= )
m=1 2 m=1 6

R G Vi
C LA A NV AN
© 2 m .

first by induction on #z, and second by writing

n+-1 n+1
> omk = Zz((’"—l)“)k
m=1 mes

and applying the binomial theorem to the summands on the right. Since
the terms >_7 m* drop out, this method can be used with & = 2 to prove
(a), then with k = 3 to prove (b), ete.

3. Prove by induction that no two consecutive elements of the Fibonacei
sequence uy, Uz, . . . have a common divisor greater than 1.

4, Carry out the second proof of the inequality

un < ()"
as indicated in the text.

5. Prove by induction that every integer greater than 1 can be repre-
sented as a product of primes.

6. Anticipating Theorem 1-1, suppose that every integer can be written
in the form 6k + r, where k is an integer and r is one of the numbers
0,1,2 3,4, 5.

(a) Show that if p = 6k -+ r is a prime different from 2 and 3, then
r=1o0r85.

(b) Show that the product of numbers of the form 6% <+ 1 is of the same
form.

(c) Show that there exists a prime of the form 6k — 1 = 6(k — 1) + 5.
(d) Show that there are infinitely many primes of the form 6% — 1.

1-3 Radix representation. Although we have assumed a knowl-
edge of the structure of the system of integers, we have said nothing
about the method by which we will assign names to the integers.
There are, of course, various ways of doing this, of which the Roman
and decimal systems are probably the best known. While the decimal
system has obvious advantages over Roman numerals, and the
advantage of familiarity over any other method, it is not always the
best system for theoretical purposes. A rather more general scheme
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1s sometimes convement, and 1t 13 the object of the following two
theorems to show that this kind of representation 1s possible, 1e,
that each mteger can be given a unique name Here, and untd
Chapter 6, lower-case Latin letters will denote integers.

TaroreM 1-1  If a1s posthwe and b s arbtrary, there 18 exaclly one
por of antegers ¢, 7 such that the condations

b=ga+r, 0Zr<a 4)
hold

Proof First, we show that (4) has at least one solution
Consider the set D of integers of the form b — ua, where u runs
over all mtegers, positive and nonpositive  For the particular cholce

{-1, b0,
u=
b, fb<oO,

the number b — ua 1s non-negative, so that D contams non-negative
elements The subset consisting of the non negative elements of D
has a smallest element  Take r to be this number, and ¢ the value of «
which corresponds to 1t Then

r=b-—gqa>0, r-a=b-(g+1)a<0,

80 that (4) 13 satisfied
To show the untqueness, assume that also

b=gda+r, 0<Zr<a
Thenif ¢’ < g,
b—ga=r2b-(g-la=r+a2a,
whieif ¢’ > ¢
b—gda=r<b-—(g+1)a=r—a<0
Hence d=qr =1+

Turorem 1-2  Let g be greater than 1 Then each @ greater than 0
can be represenfed unquely wn the form

a=1c+ eyt + g™,
wherec,upas;tweand()gcm<gfm'05m5n



1-3] RADIX REPRESENTATION 11

Proof: We prove the representability by inductionona. Fora =1

we haven = 0, ¢g = 1.
Take a greater than 1 and assume that the theorem is true for 1, 2,

...,a — 1. Since g is larger than 1, the numbers ¢°, ¢!, ¢°, . . . form
an increasing sequence, and any positive integer lies between some
pair of successive powers of g. More precisely, there is a unique
n > 0 such that ¢" < a < g"*?. By Theorem 1-1,

a=cg"+r, 0Zr<gh
Here ¢, > 0, since c.g" = a — r > g" — g" = Q; moreover, ¢, < ¢
because ¢,g" < a < g*tL If r = 0,
a=0+0-g+ - +0:0"" + cug™;
while if r is positive, the induetion hypothesis shows that » has a
representation of the form
r=Tbp+big + - - + by,

where b; is positive and 0 < b, < g for 0 <m <{. Moreover,
t <n. Thus

a=by+big+---F+bg'+0-g"" 440971+ cog™
Now use the induction principle,
To prove uniqueness, assume that
a=ctagt g =dot+digH .-+ dy,

withn >0, ¢, > 0,and 0 < ¢ < gfor0 < m < n, and alsor > 0,
d->0, and 0 <dn, <g for 0 <m <r. Then, by subtraction,
we have

0=e+eg+---+eg',

where e, = ¢n — dn and where s is the largest value of m for which
Cm # dm, 50 that e; % 0. If s = 0, we have the contradiction e, =
es = 0. If s > 0 we have, since

lem"":lcm"‘ mng—l
and
eg® = —(eo + - -+ + eV,
¢° < leg’l = leo + -+ -+ easg™ | < loo] + - -+ + lep_ylg™™
S-DA+g+--+g¢ ) =g -1,
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which 15 also a contradiction  We conclude that n = r and ¢y = du
for 0 < m < n, and the representation 1s umque

By means of Theorem 1-2 we can construct a system of names or
symbols for the positive integers m the following way We choose
arbitrary symbols to stand for the digits (1€, the non-negative inte-
gers Jess than ¢) and replace the number

ot ogt o+ oag”
by the simpler symbol ¢acoy - €160 For example, choosing g to be
ten, and giving the smaller mtegers their customary symbols, we have
the ordinary decimal system, m which, for example, 2743 15 an abbre-
wation for the value of the polynomiat 22° -+ 72* + 4x -+ 3 when
18 ten But there 1s no reason why we must use ten as the base, or
radiz, f we used seven instead, we would write the integer whose
decimal representation 1s 2743 as 10666, since

2M3=6+6 7T+6 P+0 P L T
To mdicate the base that 1s being used, we might write a subsenpt
(in the decimal system), so that
(2743)10 = (10666)7

Of course, 1f the radix 1s larger than (10)o, 1t Will be necessary to
invent symbols to replace (10);0, (11)10, ,9— 1 For example,
taking ¢ = (12)10 and putting (10)10 = «, (11);0 = 6, we have

()12 + (T2 = (1)

Blhiz (ahiz = @70 (10)30 = B70)10 = (W)

PROBLEMS

1 (a) Show that any imtegral weight less than 2°*' can be weighed
using ooly the standard weights 1, 2, 23, , 27, by puttig the unknown
weight on one pan of the balance and & smtable combimation of standard
weights on the other pan

(b) Prove that no other set of n + 1 weights wall do this [Hent Name
the weightssothat we < w1 € < 1, Let k be the smallest index suck
that us # 2* and obtamn a contradiction, using the fact that the number of
nonempty subsets of  set of n + 1 elements 15 2*+ — 1]

2 Construct the addition and multipheation tables for the duodecimal
digits 1e, the digits 11 base twelve  Using these tables evaluate

(21a9)12 (6370},
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3. Let uy, us, ... be the Fibonacci sequence defined in the preceding
section.
(a) Prove by induction (or otherwise) that for n > 0,
Un—t +’ Un—3 + Un—s A < Up,

the sum on the left continuing so long as the subscripts are positive.

(b) Show that every positive integer can be represented in a unique way
in the form u,, 4 s, + -+ - 4 uny, where k> 1 and n;y 2 n; 4+ 2 for
i=23 ...,k



CHAPTER 2

THE EUCLIDEAN ALGORITHM AND
ITS CONSEQUENCES

2-1 Dmisibility.  Let g be dufferent from zero, and let b be arby
trary Then, if there 13 a ¢ such that b = ac, we say that a duwides b,
and wnite ajb (negation afb) As usual, the letters mvolved repre-
sent 1mntegers

e foll

are diat of this

defimition
(a) For every a 5 0, a0 and ala For every b, =£1[b
{b) If a}b and ble, then alc
(e) If |t and alc, then a|(bx + ey) for each z y  (If alb and afc,
than 215 sa3d 10 be & common dwrsor of b and ¢ )

2-2 The Euclidean glganthm and greatest camman divisor

TrEOREM 2 1 Guten any tuo tntegers a, b not both zero, there 1s a
unigue wnieger 4 such that
() d>0,
(b) dla and dp,
(c) of dile and dy}b, then di|d
Since z|y imphes that |z| < |y}, we call the d of Theorem 2-1 the
greatest common dunsor (abbreviated ecp) of e and b, and wnte
d=(a,b)

Proof Firstlet aand b be posttive and assume thata > b Then,
by Theorem 1 1, there are umque mtegers g, r; such that

e=by+tn, 0<n<e

Repeated application of this theorem shows the exstence of umque
pars @z 12, gz 73, , such that

berng+r, 0<n<rn,

n=rgtr, 0<r<n
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and this may be continued until we reach a remainder, say Thi1,
which is zero; the existence of such a k is assured because 71, 73, . - - 18
a decreasing sequence of non-negative integers. Thus the process
terminates:

Th—3 = Th—2Qk—1 + 1y, 0 <7y < Tpg
Tr—2 = Th1Qk T Tk 0 < rm <1y
TE—1 = TkQk41.

From the last equation we see that rilri_1; from the preceding
equation, using statement (b) of Section 2-1, we see that r:|rx_, ete.
Finally, from the second and first equations, respectively, we have
that rz|b and r¢ja. Thus 74 is a common divisor of @ and b. Now let
d; be any common divisor of @ and b. From the first equation, d;|r;
from the second, di|rs; ete.; from the equation before the last, di|rg.
Thus we can take the d of the theorem to be 7y.

If a < b, interchange the names of a and b. If either a or b is
negative, find the d corresponding to {al, [b|. If a is zero, (a, b) = |b].

If both d; and d; have the properties of the theorem, then dy, being a
common divisor of a and b, divides d.. Similarly, do|d,. This clearly
implies that d; = ds, and the Gecp is unique.

The chain of operations indicated by the above equations is known
as the Euclidean algorithm; as will be seen, it is the cornerstone of
multiplicative number theory. (In general, an algorithm is a sys-
tematic procedure which is applied repeatedly, each step depending
on the results of the earlier steps. Other examples are the long divi-
sion algorithm and the square root algorithm.) The Euclidean
algorithm is actually quite practicable in numerical cases; for
example, if we wish to find the Gep of 4147 and 10672, we have

10672 = 4147 - 2 - 2378,
4147 = 2378 - 1 + 1769,
2378 = 1769 1 4+ 609,
1769 = 609-2 + 551,
609 = 551-1+ 58,
551 = 58-9+ 29,

58 = 29.2.
Hence (4147, 10672) = 29.



16 EUCLIDEAN AND ITS [caar 2

1t 13 frequently 1mportant to know whether two ntegers a and &
have & common factor larger than 1 If they have not, so that
(a, b) = 1, we say that they are relatuely prame, or prime (o each other

The following properties of the acp are easily derived either from
the defimtion or from the Euclidesn algorithm

(a) The aep of more than two numbers, defined as that positive
common divisor which 1s divisible by every cammon divisor, exists
and can be found 1n the following way Let there be n numbers
ag, a3 1 @a, and define

Dy=(an@m), D2={(Dua), s Dnar= Doz an)

Then (g), a3, 2 8a) = Dacy

(b) (ma, mb) = m{a, b), i m # 0

(¢) 1f mia and mb, then (a/m, b/m) = (a, b)/m

(d) X (a b) = 4, there exst mtegers z, y such that ez + by = d
(An 1mportant consequence of this 1s that if e and b are relatively
prie, there exist z, y such that ez + by = 1  Conversely, of there 1s
such a representation of 1, then clearly (a,b) = 1)

{e) If a given mteger 1s relatively prime to each of several others,
1tisrelatively prime to thew product  Foraf (@ &) = 1and (g,¢) = 1,
there are z, y, 4, and u such that ez + by =1 and at +cu = 1,
whence az + by(at + cx) = a(z + byt) + be(yu) = 1, and therefore
(g, bcy =1

The Euclidean algorithm can be used to find the z and y of property
(d) Thus, using the numenical example above, we have

29=551—-58 9 (58 =609—551 1)
=551-9(609—551 1)
=10 &51-9 609 (551 =1769-2 609)
=10(1769—2 609)—9 609
=10 1763—29 009 {609 —2378—-1 1769)
=10 1769-29(2378—1 1769)
=39 1769~20 2378 (1769=4147—-2378)
=39(4147-2378)—29 2378
=39 4147-68 2378 (2378=10672—2 4147)

=175 4147—68 10672,
o that z = 175 y = ~68
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PROBLEMS

1. Evaluate (4655, 12075), and express the result as a linear combination
of 4655 and 12075, that is, in the form 4655z + 12075y.

2. Show that if (¢, b) = 1, then (@ — b, a +b) = 1 or 2.

3. Show that if az + by = m, then (g, b)|m.

4. Show that no cancellation is possible in the fraction

a1 + a2
by +b2
if atbe — agb; = k1.

5. Show that if bla and c|a, and (b, ¢) = 1, then bela.

6. Show that if (3, ¢) = 1, then (g, bc) = (a, b)(a, ¢). [Hinl: Prove
that each member of the last equation divides the other. Use property (d)
above, and the preceding problem.}

*7. Show that if a + b = 0, (a, ) = 1, and p is an odd prime, then

(a-i—b,%-%):lorp.

(Hint: If this ccp is d, then a 4 b = kd and (a® + 47)/(a + b) = ld.
Replace b and a + b in the second equation by their values from the first,
apply the binomial theorem, and show that dlp.]

*8. In the notation introduced in the proof of Theorem 2-1, show that
each nonzero remainder 7, (m > 2) is less than r,_2/2. (Consider sepa-
rately the cases in which r,_; is less than, equal to, and greater than
rm—2/2.) Deduce that the number of divisions in the Euclidean algorithm is
less than

2log b

= 2.88...logh,
log 2 o8

where b is the larger of the two numbers whose aep is being found, (Here
and elsewhere, “log” means the natural logarithm.)

2-3 The Unique Factorization Theorem

TarorEM 2-2.  Every integer a > 1 can be represented as a product
of one or more primes.

Proof: The theorem is true for @ = 2. Assume it true for 2, 3, 4,
ey @ L. If a is prime, we are through. Otherwise @ has a divisor
different from 1 and a, and we have a = bc, with 1 < b < a,l<c<a.

) *.Here and in all problems throughout the book, an asterisk is used to
indicate a particularly difficult problem.



18 N A AND ITS leaar 2

The mduction hypothes:s then imphes that \
) ¢
b=1Ip,, c=Hp"
=t =1
with p,’, p,”’ primes, and hence a = p'p:’ .. 0/p"" .. pf"

Any positive integer which 1s not prime and which 15 dfferent from
umity 15 said to be composrte  Hereafter p will be used to denote a
prime number, unless otherwise specified

Tueorem 2-3  If albc and (a, b) = 1, then alc

Proof If (a,b) = 1, there are mtegers z and y such that ax +4-by = 1,
or acxr +bey =¢  But a divides both ac and be, and therefore
divides ¢

THEOREM 2-4  If

n
2} I pm,
mel
Wen for ar deast one m, p = P

Proof Suppose that plpip2  p, but that p 1s different from any
of the py, pa, , Pnm1 Then p 1s relatively prime to each of the
P , a1, 8nd 50 1s relatvely prime to therr product By
‘Theorem 2-3, pip,, whence p = p,

TreoreM 2-5 (Umgue Factorszation Theorem) The representa-

tion of a > 1 as a product of prumes 18 umque up to the order of the

factors

Proof We must show exactly the following From

"

"
a= Il pn= ..H,p"‘l‘ (<P <pa,p'SH'S <),

1t follows that 1, = 1z and pm = pn’ for L < m < my
For a = 2 the assertion 1s true, smee ny = ng = 1, n=
Take a > 2 and assume the assertion correct for 2, 3, ,a—1
(@) Hfawspime,ny =na=1,p,=p  =a
(b) Otherwise ny > 1,7, > 1 From

g "
2| TI pm, p:i 11 pn’
nat mat

B
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it follows by Theorem 2—4 that for at least one 7 and at least one s,

Pl' = Dy, "= Ps'-
Since , ,
P <P=p1 <Ps =Dy

we have p; = p1’. Moreover, since 1 < p; < @ and p,|a, we have

a nm ng ’
1<—=T1] pn=1I #n <g,
D1 m=2 me=2

and hence by the induction hypothesis,
—1=mny—1 and D = D’ for 2 < m < n;.

Theorem 2-5, which appears natural enough when one is accus-
tomed to working only with the ordinary integers, assumes greater
significance when we encounter more general types of “integers’ for
which it is not true.

PROBLEMS

1. Show that if the reduced fraction a/b is a root of the equation
cox” +ciz" 44w =0,

where z is a real variable and co, ¢y, . . ., ¢s are integers with ¢o 7 0, then
alc, and blco. In particular, show that if % is an integer then V' is rational
if and only if it is an integer.

2. The Unique Factorization Theorem shows that each integer a > 1
can be written uniquely as a product of powers of distinct primes. If the
primes that do not divide a are included in this product with exponents 0,
we can write

o
a = ].—I i,
i=1

where p; is the ith prime, a; > 0 for each 7 and a; = 0 for sufficiently large
1, and the /s are uniquely determined by a. Show that if also

b= H p:‘a‘;
i=1
then

(al b) = ﬁ pimin(u;.ﬂ;),

i=1

where min (e, 8) is the smaller of « and 8. Use this to give a different
solution of Problem 6, Section 2~2.
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3 Show that the Diophantine equation
B—yl=N
1¢ solvable 1n non negattve integers z and y sf and only 1f ¥ 1s odd or divis-
1ble by 4 Show further that the solution 1s umque if and only if N or
N /4, respectively, 1s umity or a pnme  {Hant Factor the left smde ]
4 Show that the following 1dentity 1s formally correct

=1 i | =1 1

The denominators occurring on the left are the even powers of the primes

2-4 The hnear Diophantine equation. For simplieity, we con-
sider only the equation 1 two vanables
az+by=c¢ 1)
It 15 easy to devise a scheme for finding an infinite number of solutions
of this equation in case any ewst, 1t can best be explained by means
of a numencal example, say 5z + 22y = 18 Smce z 15 to be an
mteger, (18 — 22y) must also be integral Wnting
18 — 22y 3—2
=2" g gy 42
z 5 y + 5!
we see that (3 — 2y) must also be an mteger, say z  This gives
3~ 2
2= —5l, Zy+6=3

We now repeat the a~gument, solving as before for the unknown
which has the smaller coefficient

3 -5

1-2
=1- —Z,
22+ 3

=4 e=1-2

Clearly, z will be an integer for any mtegral ¢ and we have
3—5(—2)

2
= 18 — 22(5—1 + 5t _

= —1+5,

8 — 22t
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Moreover, it is easily seen that any solution x, y of the original equa-
tion must be of this form, so that we have a general solution of the
equation. :

The same idea could be applied in the general case, but it is some-
what simpler to adopt a different approach. First of all, it should be
noticed that (1) has no solution unless d|¢, where d = (a, b), and that
if this requirement is satisfied, we can divide through in (1) by d to
get a new equation

a'z +by=7¢, @)
where now (a’, b’) = 1. We now use property (d) of Section 2-2 to
assert the existence of numbers z;’, 3’ such that

GIIO, + blyol =1,
so that ¢'zy’, ¢'yo” is a solution of (2). Put 'z’ = zo, '1a” = wo.
If ¢ is any integer, we have
a'(zp + b't) + ' (o — a't) = a'zp + b'yp = ¢,
so that zo + b’t, yo — a’t is a solution of (2) for each ¢. Finally, if
z1, 91 is any solution of (2), we have
a'zg + by =¢, dz+by =7,
and, by subtraction,
a'(zo — 1) + ' (yo — 11) = 0.
Thus o'| (o ~ ¥1), ¥o — ¥1 = a’ty, and b'|(zo — 7;), 79 — 71 = bk
This gives 71 = o — b'ty, 1 = Yo — a't;, and, requiring that these
numbers satisfy (2), we have {, = —f;. Hence every solution of (2)
is of the form zo + b’t, yo — @'t, and every such pair constitutes a solu-

tion. Since every solution of (1) is a solution of (2) and conversely,
we have the following theorem.

THEOREM 2-6. A necessary and sufficient condition that the equ‘a-
tion

ar +by=c¢
have a solution z, y in integers s that dic, where d = (a, b). If there
ts one solution, there are infinitely many; they are exactly the numbers
of the form
a

b
x—xo+(‘it, Y=% 3

tl

where t is an arbitrary integer.
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There are vartous ways of getting a particular solution Sometimes
one can be found by 1nspection, i nat, the method explained at the
beginning of the section may be used or, what 1s almost the same thing,
the Euvchdean algonthm may be apphed to find a solution of the
equation which results from dividing the omginal equation through
by (a,b) The latter process o( successwely elimmating the re-

ders m the Euchd can d, but this
we shall not do at preseut (See Section 9- 2 )

PROBLEMS
1 Find » general solution of the hnear Diophantine equation
2072z + 1813y = 2849

2 Find all solutions of 197 + 20y = 1909 mithz > 0,y > 0
3 Let m and n be positive itegers, with m < n, and let 2o, 74, ) T
be all the distinct numbers among the two sequences
01 m 01 n
—1— »— and == 1=
mom m non n
arranged so that 2o < 2. < < 2x Describe k as a function of mand 7
What 13 the shortest distance between suecessive z's?

*4 Let a and b be positive relatively prime mtegers Then for certam
non negative integers n (which we shall refer to briefly as the representable
itegers), the equation az +4- by = n has a solution with 2> 0, ¥ 2 0,
while for other n 1t may not have For example 1fn = 0,3 &, or 6, or 1f
% 2> 8, then 3z 4+ 5y = n has such a solution  Show that this example 1s
typical, 1z the following sense

(a) There 15 always a number N(a, b) such that for all n > N (g, b),
n1s representable (It may be helpful to combine the theory of the present
section with the elementary analytic geometry of the line az + by = ¢,
1aterpreting z and y 1n the latter case ns real variables Note that so far 1t
15 only the exmstence of N (g, b) that 1s in question and not 1ts s1ze )

(b) The minimal value of N (z ) 18 always (@ — 1)(b — 1)

(¢) Exactly half the integers up to (¢ — 1)(b — 1) are representable

2-5 The least common multiple

TraroreM 2-7  The number (g, b) = (!:b;) has the followng prop-
erhes (@) @520, (b) alle, by biia, b, (¢) If alm and blm,
then (a, b)lm
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Proof: (a) Obvious.
(b) Since (a, b)|b, we can write

ol

(a; b) = ‘al : ( b)
and hence a|{a, b). Similarly,
la]
(@1 = bl %

and so b|(a, b).
(c) Let m = ra = sb,
and put d = (a,b), a = a;d, b = byd. Then
m = ra;d = shyd;
thus a;|sb;, and since (a3, b;) = 1, it must be that a;|s. Thus

s = a;f, and

adb
= bid =t —
m lay b1 td

Because of the properties listed in Theorem 2-7, the number (a, b)
is called the least common multiple (LcM) of @ and b.  The definition
is easily extended to the case of more than two numbers, just as for
the gep. It is useful to remember that

ab = 2=(a, b){aq, ).

PROBLEMS

1. In the notation of Problem 2, Section 2-3, show that

(o, 1) = T pmescecsy,

i=1

where max (e, 8) is the larger of & and 8.
*2. Show that

min (e, max (8,v)) = max (min (&, 8), min (e, v)).
(By symmetry, one may suppose 8 > v.) Deduce that
(a; <b: c)) = ((a, b), (a: c))-



CHAPTER 3

CONGRUENCES

3-1 Introduction The problem of solving the Diophantine equa-
tion az 4 by = c1s Just that of finding an z such that ez and ¢ leave
the same remainder when divided by b, smce then b{(c — az) and we
can take y = (¢ — az)/b  As we shall see, there are many other
instances also 1n which a comparison must be made of the remainders
after dividing each of two numbers a and b by a third, say m  Of
course, 1f the remamders are the same, then m|(a — b), and con-
versely, and this might seem to be an adequate notation But, as
Gauss noticed, the following, for most purposes, 15 more suggestive
if m|(a — b), then we write ¢ = b (mod m}, and say that e 13 con-
gruent {o & modulo m

The use of the symbol “=’ 1s suggested by the sumlanity of the
relation we are discussing to ordinary equality Each of these two
relations 15 an example of an equwalence relation, 1€, a relation R
between elements of a set, such that if @ and b are arhitrary elements,
exther a stands 1n the relation R to b {(more briefly, a R ) or not, and
having the followng properties

() aRa

(b) HaRb thenbRa.

() HaRbandbRe, thenaR e
These are called the reflexwe, sy and
respectively  That ordinary equality between numbers 1y a,n equiva-
lence relation 1s obvious {or 1t may be taken 2s an axiom) either

=borasxb, a=a, fa=bthenb=a, fa=bandb=c¢
theng = ¢

TueoreM 3-1  Congruence modulo a fired number m 15 an equiva-
lence relation

Proof (a) m|(a — @), so that a = a (mod m)

() If mi(a—b), then m|(b ~a), o a=0(mod m), then
b= q (mod m)

(¢) If m|(a — b) and m|(b ~¢), then a = b =km, b—c = Im,
say,sothata — ¢ = (k + Om, 1fa = b (mod m) and b = ¢ {mod m),
then ¢ = ¢ (mod m)

24
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Since we shall have occasion later to use several other equivalence
relations, we pause to show a simple but important property enjoyed
by all such relations. If R is an equivalence relation with respect to
a set S, then corresponding to each element a of S there is a subset S,
of S which consists of exactly those elements of S which are equiva-
lent to a, so that b is in S, if and only if a R . Now if a R b, then the
sets S, and Sy are identical: if cis in S,, then ¢ R b, and since a R b,
also ¢ R a, sothat cisin S,. If, on the other hand, a is not equivalent
to b, then S, and S, are disjoint; that is, they have no element in
common. For if ¢ is in S, and in S;, then ¢ R a and ¢ R b, which
entails a R b. These disjoint sets, which jointly exhaust S, are called
equivalence classes; an element of an equivalence class is sometimes
called a representative of the class, and a complele system of representa-
tives is any subset of S which contains exactly one element from each
equivalence class.

Section 3-3 provides examples of all these notions, with somewhat
different terminology.

PROBLEM

Decide whether each of the following is an equivalence relation, If it is,
describe the equivalence classes.

(a) Congruence of triangles.

(b) Similarity of triangles.

(¢) The relations “3£”, “>" and “>”, relating real numbers.

(d) Parallelism of lines.

(e) Having the same mother.

(f) Having a parent in common,

3-2 Elementary properties of congruences. One reason for the
superiority of the congruence notation is that congruences can be
combined in much the same way as can equations.

TeEorEM 3-2. If a=b(modm) and ¢ =d(modm), then
a+c=b+d(modm), ac = bd (mod m), and ka = kb (mod m)
for every integer k.

Proof : These statements follow immediately from the definition.
For if m|(a — b) and  m|(c — d),
then ml(e ~b+e¢—d) and m{(@@+c)— &+ d).
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1f m}(a — b), then m|k(e — b) Funally,if m|(a — b) and m|(c — d),
then mi(a — b)}(c — d) But
(a = b)(e — d) = ac — bd + b(d — ¢) + d(b — a),

so that also m|(ac — bd)

Treorey 3-3  If f(z) 15 6 polynomaal wnth entegral cocfficrents, and

a = b(mod m), then f(a) = f(b) (mod m)

Proof Let J@ =wtazt+ + cax™
If a = b (mod m), then for every non-negative integer 3,

o = b (modm),

and ¢,a’ = ¢,b’ (mod m),
by Theorem 3-2 Adding these last congruences fory = 0,1, ,»,
we have the theorem

‘The situation 1s a Iittle more complicated when we consider dividing
both sides of a congruence by an integer We cannot deduce from
ka = kb (mod m) that ¢ = b (mod m), for 1t may be that part of the
divisibility of ke — kb = k(a — b) by m 1s accounted for by the
presence of the factor & What 13 clearly necessary 1s that the part
of m which does not divide k should divide @ — b

Treorem 34 If ka = kb (modm) and (k,m) = d, then

a=b (mod %)

Proof Theorem 2-3

PROBLENS
1 Let J@) =ape* a2 '+ Foa.
where go, 1 Gn are mtegers Show that if d consecutive values of f

(e, values for consecutive integers) are all divisible by the integer d then
dlf () for all mntegral z~ Show by an example ttat this sometimes happens
with d > 1 even when (a0 an) =1

2 InTheorem 3-3 take e ~ 10 b — 1 m — 9 to deduce the rule that an
integer 15 divisible by 9 1f and only 1f this 15 true of the sum of its digits
What 15 the corresponding rule for divisbihty by 117 Use the fact that
7 11 13 = 1001 $o obtam & test for divisibility by any of the integers
7,1, 0r 13
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3-3 Residue classes and Euler’s o~function. When dealing with
congruences modulo a fixed integer m, the set of all integers breaks
down into m classes, such that any two elements of the same class are
congruent and two elements from two different classes are incon-
gruent. For many purposes it is completely immaterial which ele-
ment of one of these residue classes is used; for example, Theorem 3-3
shows this to be the case when one considers the values modulo m of a
polynomial with integral coefficients. In these cases it suffices to
consider an arbitrary set of representatives of the various residue
classes; that is, a set consisting of one element of each residue class.
Such a set a3, @z, - . ., anm, called a complete residue system modulo m,
is characterized by the following properties.

(a) If 7 5 j, then a; # a; (mod m).

(b) If ais any integer, there is an index 7 with 1 < 7 < m for which
a = q; (mod m).

Examples of complete residue systems (modm) are the set of
integers 0,1,2,...,m — 1, and theset 1,2, ..., m. The elements
of a complete residue system need not be consecutive integers, how-
ever; for m = 5 we could take 1, 22, 13, —6, 2500 as such a set.

TreEOREM 3-5. Ifay, a.,...,a,1sacompleteresidue system (mod m)
and (k,m) = 1, then also kay, kas, ..., kam is a complete residue
system (mod m).

Proof: We show directly that properties (&) and (b) above hold
for this new set.

(a) If ka; = ka; (mod m), then by Theorem 3-4, a; = a; (mod m),
whence 7 = j.

(b) Theorem 2-6 shows that if (k,m) =1, the congruence
kz = a (mod m) has a solution for any fixed a. Let a solution be z,.
Since ay, ..., an is a complete residue system, there is an index 7
such that o = a; (mod m). Hence kzo = ka; = a (mod m).

The reason that we use the adjective “complete’” when speaking of
a residue system is that there is another kind which is frequently use-
ful, called a reduced residue system. This is a set of integersay, . . . , an,
incongruent (mod m), such that if @ is any integer prime to m, there
isanindex 7, 1 < 7 < h, for which @ = a; (mod m). In other words,
a reduced residue system is a set of representatives, one from each of
the residue classes containing integers prime to m. (Clearly,
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(e, m) = (b, m) 1f a =5 (modm), since then mj(a — b}, so that
(a, m)|(¢ — b), and hence (g, m){b, this mmplies that (a, m)| (b, m),
and also, by symmetry, that (b, m)|(a,m)) The number k 1s the
number of positive mtegers not exceeding m and prime to m  This
function of m 18 customarly designated by ¢{m), and 13 called
Euler’s p-function or the totrent of m

TrHEOREM3-6 Ifai, . ,am)sareduced restdue system (mod m)

and (k,m) = 1, then also kai, s kapm) 13 @ reduced residue

systems (mod m)

The proof 1s exactly parallel to that of Theorem 3-5

Euler's g-function has many and, as we shall
see, 1t oceurs dly i ber-theoret;

TreoreM 3-7  If (m,n) = 1, then ¢(mn) = ¢(m)e(n)
(A function with this property is ealled a multiplicative function
For another example, see Problem 6, Section 2-2 )

Proof Take mtegers m,n with (m,n) =1, and consider the
numbers of the form ma + ny  If we can so restnet the values which
z and y assume that these numbers form a reduced residue system
{mod mn), there must be p{mn) of them But also therr number 1s
then the product of the number of values which z assumes and the
number of values which y assumes Clearly, m order for mz + ny
to be prime to m, 1t 13 necessary that (m, y) = 1, and hkewise we
must have {n,2) =1 Conversely, if these last two conditions are
satisfied, then (mz + ny, mn} = 1 Hence let  range over a reduced
residue system (mod n), say 1, + Ty(ay, and let y run over a re-
duced residue system (mod m), say ¥, » Ypomy If for some
mdices ¢, 3, k, I we have

me, + ny, = mz, + ny; (mod mn),
then
m{z, — 2} + (Y, — 1) = 0 (mod mn)

Since dtvisibility by mn imphes divisibihity by m, we have
m(z, — 21) + n(y, ~ x) =0 (mod m),
n(y; — y1) = 0 (mod m),

¥ =y (mad m),
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whence j = I. Similarly, 7 = k. Thus the numbers mxz + ny so
formed are incongruent (mod mn). Now let a be any integer prime
to mn; in particular, (a, m) = 1 and (e, n) = 1. Then Theorem 2-6
shows that there are integers X, Y (not necessarily in the chosen
reduced residue systems) such that mX -+ nY = a, whence also
mX+nY=a (mod mn). But there is an z; such that X =z; (mod n),
and there is a y; such that ¥ = y; (mod m). This means that there
are integers k, I such that X = z; 4- kn, Y = y; 4+ Im. Hence

mX +nY = m(z; + kn) 4+ n(y; + m) = mz; + ny; = a (mod mn).

Hence as z and y run over fixed reduced residue systems (mod n) and
(mod m) respectively, mx + ny runs over a reduced residue system
(mod mn), and the proof is complete.

1
THEOREM 3-8. o(m) =m I1 (1 - —) )
pim 14
where the notation indicates a product over all the distinct primes
which divide m.
Proof: By Theorem 3-7, if m = I1 p;%,

t=1

then
o(m) = iI;Il(p(Pi“‘)-

But we can easily evaluate o(p®) directly; all the positive integers
not exceeding p* are prime to p* except the multiples of p, and there
are just p** of these. Hence

w1 1
(™) = pi* — p© 1=Pi‘<1—“>’

H
and so

- . 1 r . 1
e(m) = IT p~ (1 - —) = Il p*- (1 - -—>
f=1 Y& i=1 i=1 Pi

1
=m [] (1 - ~> .
pim 14
For example, the integers 1, 5, 7, 11 are all those which do not

exceed 12 and are prime to 12, and
p(12) =121 - (1 ~ 3) = 4.
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TrEorEM 3-9 L o(d) =n
i

Proof Let dy, , dx be the positive divisors of = We separate
the ntegers between 1 and n inclusive nto classes C{d;), , Cldy),
putting an mteger mto the class C(d,) if 1ts ep with nis ¢;  The
number of elements i C(d;) 15 then

1
s<n
@m—d

and since every mteger up to 7 1s 1n exactly one of the classes,

Y L 1l=n
d agn
@

‘The number of integers ¢ such that ¢ £ n and (g, n) = d;1s exactly
equal to the number of sntegers bsuch that b < »/d, and (b, n/d,) =1,
m fact, multiplying the d’s by d,, we get the as But from the
defimtion of the Euler function, the number of b's 1s clearly p(n/d,)

‘Thus n
2o(E) =

which 1s equivalent to the theorem, since, as d, runs over the divisors
of &, n/d; also runs over these divisors, but in reverse order
To Mustrate the theorem and 1ts proof, take n = 12 Then
o(1) +¢(2) +eB3) + o) + 0(6) + 0(12)
=1+1+2+24+2+4=12
CHy=1(1,57114, C@={210] @) =39,

C4) = {4,8), C(6) = {6} €(12) = (12}
rROBLEMS
*1 Prove that 1f (s 8) = ¢ then
_ dela)e(d)
o ==

2 Show that if 5> 1, then the sum of the positive integers less than n
and prime to 1t 15
np(n)

2

[Hint 1f m satisfies the conditions, so does n — m |
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3. Show that if d|n, then ¢(d)|e(n).
4. Let n be positive. Show that any solution of the equation

o(x) =4n + 2

& of one of the forms p= or 2p%, where p is a prime of the form 4s — 1. [Hint:
Use the factorization of ¢ (x) as given in Theorem 3-8.]

*5. Let f(z) be a polynomial with integral coefficients, and let ¥(n)
denote the number of values

f(o):f(1)> "‘lf(n - 1)

which are prime to n.
(a) Show that ¢ is multiplicative:

Y(mn) =¢(m)-¢¥n) if (mn) = 1.~

(b) Show that
Y(p*) = p=~'(p — by),

where b, is the number of integers f(0), f(1),...,f(p — 1) which are
divisible by the prime p.
6. How many fractions r/s are there satisfying the conditions

rs)=1 0<r<s<a?

3-4 Linear congruences. Because of the analogy between con-
gruences and equations, it is natural to ask about the solution of con-
gruences involving one or more (integral) unknowns. In the case of
an algebraiec congruence f(z) = 0 (mod m), where f(z) is a poly-
nomial in z with integral coefficients, we see by Theorem 3-3 that if
¢ = ais a solution, so is every element of the residue class containing
a. For this reason it is customary, for such congruences, to list only
the solutions between 0 and m — 1, inclusive, with the understanding
that any z congruent to one of those listed is also a solution. Simi-
larly, when mention is made of the number of roots of a certain con-
gruence, it is actually the number of residue classes that is meant.

The simplest case to treat is the linear congruence in one unknown;
that is, the congruence

axr = b (mod m).

As we have already noticed, this is equivalent to the linear Diophan-
tine equation

ax — my = b,

and by Theorem 2-6 this equation is solvable if and only if (a, m)|b.
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Tf 1t 15 solvable, and if Zg, %o 15 2 solution, then a general solution 15

z=a9 (mod -75) ) Y=y (mod S) N

whered = (e, m) Among the numbers z satisfying the first of these
congruences, the numbers

d~1
xu,zo+§;zo+27m- rzy -{\——(—ﬂ

are mcongruent (mod m), while every other such z 1s congruent
(mod m) to one of these Hence we have the following theorem

Taeorem 3-10 A necessary and suficient condstzon that the con~
gruence

az = b (mod m)
be soluable 18 that (a, m)|b  If this 1s the case, there are exactly (a, m)
solutions (mod m)

‘While Theorem 3-10 gives assurance of the existence of a solution
under appropriate eircumstances and predicts the number of such
solutions, 1t says nothmg about finding them For this purpose the
simplest procedure, f no solution can be found by mnspection, 1s to
convert the congruence to an equation and solve by the method given
at the beginning of Section 24

Consider, for example the congruence

347 = 60 (mod 98)

Since (34, 98) = 2 and 2|60, there are just two solutions, to be found
from
17z = 30 (mod 49)

Ths 15 equivalent to 172 — 49y = 30 and we get

_ 495 +30 2y+4 2y +4
T y+2— ="
17t -4 ¢
e A T

t=2z
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Takez = 0; then? =0,y = —2,z = —4. Hence

z = —4 (mod 49),
and the two solutions of the original congruence are

= —4, 45 (mod 98).

The solution of a linear congruence in more than one unknown can
be effected by the successive solution of a (usually large) number of
congruences in a single unknown. Consider the congruence

a;1%y + aors + - -+ + anz, = ¢ (mod m).

The obviously necessary condition for solvability, that (as, . . ., an, m)

should divide ¢, is also sufficient, just as in the former case. For,

assuming it satisfied, we can divide through by (ay, . . ., a,, m) to get
a)zy + -+ a,/z, = ¢’ (modm'),

where now (a1, ...,a., m") = 1. If (@', ..., any', m') = d’, we
must have 'z, = ¢ (mod d');
since (a,’, d’) = 1, this has just one solution (mod d’). Thus there
are m’/d’ numbers z, with 0 < z, < m' salisfying this congruence.
Substituting these into the preceding congruence, we get m'/d'
congruences in n — 1 unknowns, and the process can be repeated.
As an example, consider the congruence
2z -+ 7Ty = 5 (mod 12).
Here (2, 7, 12) = 1. Since (2, 12) = 2, we must have
7y = 5 (mod 2),
which clearly gives y = 1 (mod 2),0ory =1, 3, 5, 7, 9, 11 (mod 12).
These give
2z =10, 8, 6, 4, 2, 0 (mnod 12)
respectively, or
z=25,4,3,2, 1,0 (mod 6).
Thus the solutions (mod 12) are
z,y=25,1; 11,1; 4,3; 10,3; 3,5; 9, 5;
2,7;87;1,9; 7,9; 0,11; 6, 11.
rI-‘he general situation is given in the following theorem, which is
easily proved by induction on the number of unknowns.
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TaeoreM 3-11  The congruence
a4+ -k aats = ¢ (mod m)
has gust dm™ or no solutions (mod m) according as dje or dlc,
uhered = (21, a5, )
Turning now to the simultaneous solution of a system of linear
congruences we consider the system

@z = f (mod my), ,  an = B, (mod m,),

a, and B, ntegers

Clearly, no z satisfies all these congruences unless each 1s solvable
separately Assuming that this is so, we can restrict our attention to
systems of the form

z=¢ (modm), T =, (modm,)

It 15 clear that this system will have no solution unless every pair

has From the first of the congruences
z=¢ (modny), x=c (modm,),
we get z = ¢, + myy, substituting in the second yields
my = ¢, — ¢, (mod m,),
and consequently 1t must be true that
(m,, m)l (e — )

If this 15 the case, then ¥ 15 umque (mod m,/(m, m,)), and z 18

umque (mod rem,/ (m, m,)), that 15 modulo the e of m, and m,
‘We have thus prosed part of the following theorem

TuEOREM 3-12 A necessary and sufficrent condtzon that the system

of congruences x = ¢, (modm,) (=12 , 1) be solvadle 13

that for every patr of indces ¢ 7 between 1 and n incluswe,

[CEOVICEEN

The solution, of 1t exists 1s unique modulo the Lew of my, My

Progf To prove the sufficiency we must show the follonng I
every pair from among the # congruences 1s solvable, and if any two
of them are solved to give a single new congruence, then the n = 1
congruences consisting of this new one and the remaining n — 2 onginal
congruences also have the property that every pair from among them
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is solvable. That is, assume that for all Z and j with 1 <7< m,
1 < j < m, it is true that (m;, m;)|{(c; — ¢;), and let the solution of
2 = ¢; (mod my), x = ¢z (mod msy)

be

z = f (mod (my, my)).
Then we must show that for 3 <7 < n,

(my, (my, ma))|(c; — f).

This can easily be seen by considering the exponent « of any prime p
which occurs in the prime-power factorization of (m;, (mj, mp)). Let
the exponent of p in the factorization of m; be 8;, forj = 1,2,...,14.
Then p occurs in {(my, mg) With exponent max (84, Bz), so that

a = min (8;, max (81, 2)) = max (min (8y, 8;), min (B, B:)).
But our assumption is that
pmin(ﬁx.ﬁ-')l(cl —¢) and prm'n(ﬂz.ﬂ;)l(cz - &),
and since Y| (c; — f) and p?%|(co — f) we see, by writing
a—c=(—f+{—c),

02——C;=(02‘—f)+(f_ci))
that ) .
pmm(ﬂx.ﬁi)l(ci _ f) and pmm(ﬁz.ﬁi)l(ci — f),

so that also p*|(c; — f). Since p* was an arbitrary prime-power
factor of (m;, (my, my)), it follows that

(m, (m1, ma))| (e: — f),

and the sufficiency of the condition is proved.

Finally, solving the first two congruences simultaneously, we
get a solution which is unique (mod (m;, mg)); solving this with
the third, we get a solution unique (mod (ms, (m;, ma))), that is,
unique (mod (my, my, ma)), ete.

As a consequence of Theorem 3-12, ‘we have the following im-
portant result,.

TrEOREM 3-13 (Chinese Remainder Theorem). Every system of
linear congruences in which the moduli are relatively prime in pairs is
solvable, the solution being unique modulo the product of the moduli.
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PROBLEMS

1 Solve the congruence 6z + 16y = 9 (mod 18)
2 Solve smultaneously
2= 1 (mod 2),

z =1 (mod 3),
z =3 (mod 4),
2= 4 (mod 5)
3 Suppose that the system of congruences
2= (modm), 1=12  ,m

15 to be solved, where (m,, my) = 1 forall{,y with2 73 Put
M=m M,

andfors =1, ,m lety = b be a salution of the congruence

%y =1 (mod m,)
Then show that the solution z of the eniginal system i given by
z= ‘éu, ,’%I—l (mod M)

4 Show that given 4, b, and n, with (o b) = 1, there 23 an z such that
(az +b,n) =

[Hwnt i plaand pln then paz + b) foranyz I pln and ple, there1sa
solution of
oz 4 b= 1 (mod p)

Use the Chinese Remainder Theorem ]
3-5 Congruences of higher degree. We consider now the con-
gruence
J@=) =agz* +az™t + 4+ a. =0 (mod m),
where the a, are not all congruent to zero (modm) Ifm = H o

then clearly the given congruence 1s equivalent to the system of
congruences

f{z) = 0 (mod p1*), s f@) =0 (modp™)
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If for each ¢ with 1 < ¢ < r, ¢; is a root of f(z) = 0 (mod p;*),
then by the Chinese Remainder Theorem there is a solution xy of
the system

z = ¢; (mod p;*™), e z = ¢, (mod p,*7),

and this 7o, which is unique modulo m, is a solution of the original
congruence. Consequently, the number of solutions of the original
congruence is the product of the numbers of roots of the congruences
modulo the prime-power divisors of m. Hence we can restrict our
attention to the case where the modulus is a power of a prime.

The reduction can easily be carried a step further, so that we have
only to consider the higher degree congruence with prime modulus,
together with a number of linear congruences with prime moduli.
The idea is that the solutions of

f(z) = 0 (mod p%) (1)
are to be found among those of
J(z) = 0 (mod p) (2)

with 8 < a. Suppose that for some 8 < a a solution of (2) is known,
say a. (There may be others, of course.) Then every number
a + tp? is a solution of (2); it is desired to determine { so that
a + tp® is also a solution of

f(z) = 0 (mod p#*1). (3)
By Taylor’s theorem,
gy\2p17 Bynp(n)
j(a+tp5) = f(a) + tpﬁf'(a) + @_)_é:fr_(ﬂ)_ R g—p—)nilﬂ .

A term ¢;27 in f(z) leads to the term
iG—1D...70—-k+1 . ] .
G- ...(G—=k+ )c,-x""k _ (Z) e

k!
in f® (z)/k}, so that the numbers f® (a)/k! are integers. Hence
f(@ + 1) = fla) + tpf’ (@) (mod p°*1),
and (3) becomes
f@) + tpf (@) = 0 (mod p*+).
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Now ##|f{a), so that this reduces to the linear congruence

r@-i= =18 o),

of which the number of solutions 15

0, i plf(a) but Pff:;)

f@),
p, 4 plf(a)and p| =5 o
L, fpif)

The general pracedure should now be clear, if all solutions of (2)
with 8 = 1 are hknown Choose one of them, say a1 Corresponding
to .t there are 0, 1, or p solutions of (2) with 8 = 2, to be found by
solving 1 hnear congruence If there are no solutions, start over with
a different @1 If there are solutions, choose one and find the corre-
sponding solutions of (2) with § = 83  If all possibilities are explored
1n this way all solutions of (1) ean eventually be found

Consider for example the congruence

f(z) = 2® — 42% + 5z — 6 = 0 (mod 27)
We first search for roots of
2 —42® 4 57 — 6 = 2 + 227 4 22 = 0 (mod 3)
Trying successively 0, 1, 2, we find the only solution of this congruence
tobe z =0 (mod3) Putting z =0+ 3¢, ne now wish to find £'s
for nhich
S0 +36) = 0 (mod 9)
As ahove, this reduces to
31'(0)t = ~1(0) (mod 9),
or
15¢ = 6 (mod 9),
or
5t = 2 (mod 3),

so that ¢ =1 (mod3) Putting ¢t =14 34, weget z =3+ 9,
2nd we ask that

J@3 + 9} = 0 (mod 27)
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This gives
f(8) + 91" (8) = 0 (mod 27),
or
9-8- = 0 (mod 27),
=0 (mod 3)

Thust; = 3 and z = 3 + 27{5, so that the only solution of the origi-

nal congruence is
z = 3 (mod 27).

If at any stage in the above argument there had been more than
one possibility, each of them would have had to be followed through
to obtain corresponding solutions.

PROBLEMS

1. Find all solutions of the congruence
z% — 3z + 27 = O (mod 1125).
[Answer: z == 51, 426, 801 (mod 1125).]

2. If f(z) is 2 nonconstant polynomial with integral coefficients, show
that it assumes composite values for arbitrarily large z. [Hint: Apply
Taylor’s theorem to f(m + & - f(m)).]

8. Suppose that the congruence f(z) = 0 (mod p) has as roots the s
numbers 7, ..., z,, which are distinet (mod p). Show that if pf’(z)
fork = 1,..., s, then the congruence f(z) = 0 (mod p*) also has exactly
s roots, for every « > 1.

3-6 Congruences with prime moduli. If f(x) and fi(z) are two
polynomials whose corresponding (integral) coefficients are congruent
modulo m, then we say that f(z) and f1(x) are identically congruent
modulo m, and write

J(@) = f1(z) (mod m). 4)

When there is no reference made to the numerical values of z in such
a relation, it will always mean identical congruence. It should be
noted that (4) is not equivalent to the assertion

f(z) = fi(z) (modm)  forall z,

since, for example, 2* = x (mod 3) for all z, but 2® and = are not
identically congruent modulo 3.
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If g(x) 15 also & polynomial with 1ntegral coefficients, and g(z) has
leading coefficient 1, then f{z) can be divided by g(z) m the usual
fashion to obtam a quotient gr{(z) and a remamnder ri(z) Both
q1 and 7y are pol, Is with ntegral coeffi and the degree
of ry 18 less than that of ¢ If now
@) =g(z) modm) and  ri(z) =r(z) (mod m),

then

J(z) = g(z)g(z) + rle) (mod m) ()

Such dwiston modulo m 13 not always possible if the leading coefficient
of g(z) 1= not 1, since fractional coeffictents may then be encountered
In the case of & prime modulus, however, 1t 1 possible to find an
mteger ¢ such that cg(z) has leading coefficient congruent to 1, and
80 to carry out the division

), £(z) = 0 (mod m),
then g(z) 1s said to dunde f(z) modulo m, or to be a factor of f(z}
modulo m, and we vmte

g(@)lf (z) (mod m)
If f(z) has no nonconstant factor (modm) of lower degree than
1tself, 1t 13 sard to be srreducible (mod m) If (z — a)|f(z) (mod m),
then o 1s sard to be a zero of f(z) (mod m), or a root of the congruence
JS(x) = 0 (mod m)

In the case of prime modulus, the Euclidean algorithm can easily
be generalized, so that we can find the Gep (mod p) of any two poly-
nomals  For example, if

J@y=2+22—z+1, g@)=22-z+41,

then

J@) =z ¢ + @+ 1) (mod 3),

9(@) = (z + 1)(z + 1) (mod 3),
and 5o the acp (mod 3) of j{z) and g{z) 1s the last nonvamshing
remamnder, namely x + 1 But

f(z) = (z 4 3)g(z) + (¢ — 2} (mod 5),

9(z) = (x+ 1)(z - 2) + 3 (mod 5),

z—2=3@2z+ 1) (mod 5),



3-6] CONGRUENCES WITH PRIME MODULI 41

so that f(z) and g(z) are relatively prime (i.e., have no common
nonconstant divisor) modulo 5.

If the leading coefficient of g(z) is not 1, it may be made so by
multiplication by a suitable constant, and then one can find
(f (=), cg ().

It is now possible to prove theorems analogous to Theorems 2~1
through 2-5, and so to show that every polynomial is congruent to a
product of polynomials which are irreducible (mod p), and that this
representation is unique except for the order of factors and the
presence of a set of constant factors whose product is 1 (mod p).
Notice that this result is not valid when the modulus is composite,
for example,

z— 1z = (x—3)(x+ 2) (mod 6),

and each of the linear polynomials is of course irreducible.
Another assertion which holds only for prime modulus is that if
f(z)g(z) = 0 (mod p),
then either
f@)=0 or g(z) = 0 (mod p).

For otherwise we may suppose, with no loss in generality, that the
leading coefficients of f(z) and g(z) are 1. But then the leading co-
efficient of f(z) - g(z) is also 1, and therefore not 0.

TrEOREM 3~14 (Faclor theorem). If a is a root of the congruence

f(z) = 0 (mod m),
then

(x ~ a)lf(z) (mod m),

and conversely.

Proof: Take g(z) = z — a in equation (5). Then r(z) = r is
constant, and

fil

f@) = (z — a)g(x) + r (mod m).

Putting = ¢, we see that r = 0 (mod m) if f(e) =0 (mod m).
Conversely, if

f@) = (= — a)g(z) (mod m),
then

f(a) = 0 (mod m).
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TaeoreM 3-15 (Lagrange’s theorem)  The congruence
J(2) = 0 (mod p)
n which
f(z) =age® + e+ +an  ao#0(modp),
has at most n roots

Proof Forn =1 this follows from Theorem 3-10  Assume that
every congruence of degree n — 1 has at most n — 1 solutrons, and
that @ 15 a oot of the oniginal congruence Then

J(@) = (z — alg(z) (mod p),
where g(x) 15 not 1dentically zero (mod p) and 1s of degree n — 1

It therefore has at most n — 1 zeros,sayc;,  ,¢, wherer<n—1
‘Then if ¢ 1s any number such that f{c) = 0 (mod p), then

(¢ — a)g(c) = 0 (meod p),
s0 that exther
¢ = a {mod p)
or
glc) =0 (modp), thatis, c=c forsomes, 1 <t <7

In other words, the original congruence has at most r + 1 < n roots
The theorem now follows by the induction principle

Agam, this theorem 1s not vahd for composite modulus

PROBLEM

Let f(z) be a polynomual of degree n, with integral coefficients Show
thatif n + 1 consecutive values of f(z) are divistble by a fixed prime 7, then
plf(z) for everyntegralz  Cf Problem 1, Secton 3-2

3-7 The theorems of Fermat, Euler, and Wilson

Treorey 3-16 (Fermat's theorem)  If pla, then

@t =1 (mod p)

Since p(p) = p — 1, this s a specal case of

TueoreM 3 17 (Euler’s theorem)  If (a, m) = 1, then

a*™ = 1 (mod m)
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Proof: Let ¢y, ..., Goum be a reduced residue system (mod m),
and let @ be prime to m. Then acy, ..., GCym is also a reduced
residue system (mod m), and

e(m) e(m) o(m)

11 ac; = o™ H ¢; = 11 ¢; (mod m).

i=1 i=1
Since (m, Ile;) = 1, this implies that
a?‘™ = 1 (mod m).

We see from Euler’s theorem that if we take the least positive
remainders (mod m) of the sequence of powers a, a%, a3, ...of a
number a which is prime to m, we will have a periodic sequence, of
period less than or equal to ¢(m). The period of this sequence—that
is, the least positive exponent ¢ such that a* = 1 (mod m)—is called
the order of a (mod m), or the exponent to which a belongs modulo m,
and we write ord,, a = .

TuroreM 3-18. If @* = 1(mod m), then ord,, alu.
Proof: Put ord,,a = t,andlet u = ¢t +r,0 <r <{ Then
@t =a’" = (@})?-a" = a" =1 (modm),

and if r were different from zero, there would be a contradiction with
the definition of ¢

THEOREM 3-19. For every a prime to m, ord,, alp(m).
Proof: Follows immediately from Theorems 3-16 and 3-18.

As we shall see in the next chapter, the numbers a of order p(m) are
of great importance.

The direct converse of Fermat’s theorem does not hold; that is, it
is not true that if for some @, @™ ! = 1 (mod m), then m is prime.
For example, the powers of 3, reduced modulo 91, are 3, 9, 27, 81, 61, 1,
50 that ordg; 3 = 6. Since 6|90, 3°° = 1 (mod 91). But 91 is not
prime. The clue to the proper converse lies in the observation that
¢(m) < m — 1 always, and p(m) = m — 1if and only if m is prime, so
that m will certainly be prime if there is an a such that ord,, a=m—1.

THEOREM 8-20. If there is an a for which a™ ! = 1 (mod m), while
none of the congruences a"™ V1P = 1 (mod m) holds, where p runs
over the prime divisors of m — 1, then m is prime.
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Proof By the first hypothesis and Theorem 3-18, the exponent ¢
to which a belongs (mod m) dividesm — 1 On the other hand, smee
every proper divisor of m — 1152 divisor of at least one of the num-
bers (m — 1)/p, the second hypothesis and Theorem 3-18 1mply
that { 1s not a proper divisor of m — 1 Consequently ¢ = m ~ 1
By Theorem 3-19, m — 1]p(m), and s0 m ~ 1 = p(m) and m 13
prime

In a way, Theorem 3-20 1s simply a restatement of the fact that
@(m) =m — 11f and only f m 1s prime  But 1n distinction to this
statement, 1t can actually be used to investigate the primahty of
large numbers

Fermat’s theorem exhibzts congriences which have the maximum
number of roots allowable by Lagrange’s theorem The following
theorem gives another important example of such a situation

THEOREM 3-21  If p 18 prime and d dundes p — 1, then there are
ezacily d roots of the congruence

2? = 1 (mod p)
Proof Sincedlp — 1,
277 — 1 = (2° — 1)g() (mod p),
where g(z) 13 a polynomal of degree p — 1 — dinz By Lagrange’s
theorem, the congruence
¢(z) = 0 (mod p)
hasat most p — 1 — dsolutions  Since 27! = 1 (mod p) has exactly
p—1leolutions z?=1 (mod p) must have at least p—1— (p—1—d)=d
solutions  Since 1t can have no more than this, 1t must have exactly
d solutions
As another consequence of Fermat's theorem, we have
TuroREM 3 22 (Wilson s theorem) If p 1s prime, then
(p — )1 = —1 (mod p)
Proof Fermat’s theorem and Theorem 3-14 show that
Pr-1=@-1E-2) (-p+1)(medp)
1dentically so that the constant terms must be congruent,
=1=(-1)""X(p ~ 1)! (mod p)
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If p is odd, this gives the theorem. If p = 2, then we have
~1 =1 = 1! (mod 2).
The converse of Wilson’s theorem does hold.

THEOREM 3-23. If m > 1 and (m — 1)! = —1 (mod m), then m

s prime.

Proof: If m is composite, it has a proper divisor d > 1. But then

(m — 1) =03% —1 (mod d),
and a fortiors,
(m — 1)1 $# —1 (mod m).

There is another way of obtaining Wilson’s theorem which also
throws some light on a subject to be considered in much more detail
in Chapter 5. Let a be any integer not divisible by the odd prime p,
and let b be one of the numbers 1, ..., p — 1. Then we know that
there is a unique solution (mod p) of the congruence bz = a (mod p).
Let b, called the associate of b, be that positive solution which is less
than p. We must distinguish two cases, according as some b is asso-
ciated with itself or not. If & = b/, then ® = a (mod p), so that the
congruence z2 = a (mod p) has a solution; in this case a is said to be
a quadratic residue of p. If the congruence z° = a (mod p) has no
solution, a is called a quadratic nonresidue of p. (Similar definitions
hold for nth power residues and nonresidues.)

If a is a quadratic residue of p, and if b, = a (mod p), then clearly
also (p — b;)? = @ (mod p); by Lagrange's theorem there are no
other solutions. Thus in this case the numbers 1, ..., p — 1 can be
grouped into (p — 3)/2 pairs of associates, the product of each pair
being congruent to a (mod p), together with the two numbers b,
and p ~— b,. Thus

-1
p-Dl= Plb =a® 2.5 (p — b)) = —a® V2 (mod p). (6)

On the other hand, if @ is a quadratic nonresidue of p, the numbers
1,2,...,p — 1canbegrouped into (p — 1)/2 pairs of associates, and

p—~1
(p— D= bII b= a2 (mod p). )
=1
In order to give a uniform statement of (6) and (7), we define the

Legendre symbol (a/p) (also frequently written (ﬁ) or (alp)) to
p
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mean 1 1if @ 1s a quadratic residue of p, and —Lifa1sa quadratic
nonresidue of p  Here a 15 called the “first entry,” and p the ''second
entry” (Note that (a/p) 1s not yet defined 1f pla ) Then (6) and (7)

beeome (1)1 = = a/pa® " (mod p) ®

Taking @ = 1, and noting that the congmence z° = 1 (mod p) has
the solution x=1, so that (1/p)=1, we have (p—1}! 1 (mod p),
which 18 Wilson's theorem agamn  Substituting 1n (8), this gives

(a/p)a®"* = 1 (mod p),
or sinee {a/p) = =1,
(a/p) = a7 (mod p)

Thus we have proved

THEOREM 3-24 (Buler’s criterion) A necessary ond sufficient
condalson that a be a quadratic residue of an odd prime p 1s that the
congruence D12 = 1 (mod p)

hold

PROBLEMS
1 Show that if ¢b = 1 (mod m) then
ordna = ordm b
2 Show that if p 15 an odd prime and ordyaa = 2t then
at= —1 (mod p%)
Show that this need not be true if p = 2
3 Show that1f p1san odd primeand a* = ~1 (mod p) then a belongs to
an even exponent 2u {mod p) and ¢1s an odd multiple of
*4 Bhow thatif p1s an odd prime and p|(z* 4 1) thenp =1 (mod 2°+%)
Deduce that there are mnfimitely many primes congruent to 1 modulo any
fixed power of 2
5 Show that fora> 1 and n.> 0 nle(a® — 1)
6 Use Theorem 3-20 with ¢ = 2 to show that 389 1s prime
*7 Show that if (@ 8) = 1, p 18 an odd pnme not dividing @ + b, and
ar+b?
atd
thend =1 (mod p} Cf Problem 7 Section2 2 [Hint Let g bea prime
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divisor of {a® + b?)/(a + b), so that a? = —D? (mod ¢). Show that a k
exists such that b|(kg + a), and put r = (kg + a)/b; then rP= —1
{mod g), so that ordg (—7) = 1 or p. If the first alternative is eliminated,
then p|(g — 1).]

8. Show that the congruence f(z) = 0 (mod p), of degree m < p, has
m roots if and only if f(z)| (=® — z) (mod p).

9, Use Theorem 3-21 and the method of Section 35 to show that if p
is prime and dlp — 1, then there are exactly d roots (mod p”) of the con-
gruence

z% = 1 (mod p"),
where n > 1.
*10. Show that the Diophantine equation

(n—-Dl=n*~—1

has only the solutions n, k = 2,1; 3, 1; and 5,2. [Hint: Prove and use
the following statements:

(a) There is no solution with n even and larger than 2.

(b) = ~ 1J{n — 2)!if n is odd and larger than 5.

(¢) (n — 1)Y(n* — 1) only if (n — 1)|k. It is useful to write n* ~ 1
= ((n—1) + 1) — 1]



CHAPTER 4

PRIMITIVE ROOTS AND INDICES

4-1 Integers belonging to a given exponent (mod p)

TreoreM 4-1  If ordma = £, then ordm ™ = #/(n, )

Proof. Let (n,£) =d Then, since a* = 1 (mod m), we bave
@)™ = (a9 =1 (modm),

so that if ordn @™ = ¢/, then

t
vl 1
l 7 [
But from the congruence
(@ =1 (modm),
we have that f|nt’, or
tn,
dld
Smee
L n
v b
this gives
@)

TurorEM 4-2  If any wnteger belongs to ¢ (mod p), then exactly
¢{t) ancongruent numbers belong to ¢ (mod p)

Proof Assumethatordpa =¢ Then by Theorem 3-19,{|(p ~ 1),
so that by Theorem 3-21 there are exactly £ roots of the congruence
48
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#! = 1 (mod p). But all the numbers ¢, %, .. ., a' are roots of this
congruence and they are incongruent (mod p), so that they are the
only roots. By Theorem 4-1, the powers of a which belong to
¢ (mod p) are the numbers ¢” with (n,¢) = 1,1 < n <, and there
are just ¢(¢) of these numbers.

TreoreM 4-3. If #j(p — 1), there are p(t) incongruent numbers
(mod p) which belong to ¢ (mod p).

Proof: Let d run over the divisors of » — 1, and for each such d let
¥(d) be the number of integers among 1, 2, ..., p — 1 of order
d (mod p). By Theorem 3-19 and Fermat’s theorem, each of the
integers 1, 2, ..., P — 1 belongs to exactly one of the d. Hence

2 vd)=p-1
djp -1
But also
2 pdy=p—-1,
dip—1

by Theorem 3-9, so that
2 ¥(d) = 2 o(d).
dip—~1 dip~-1

By Theorem 4-2, the value of ¥(d) is either zero or ¢(d) for each d,
and we deduce from the last equation that ¥(d) = ¢(d) for each d
dividing p — 1.

If ord, @ = ¢(m), then a is said to be a primitive root of m. The
importance of this notion lies in the fact that if ¢ is such a primitive
root, then its powers

g g .., gt

are distinct (mod m) and are all relatively prime to m; they therefore
constitute a reduced residue system modulo m. Thus we have a con-
venient way of representing all the elements of a reduced residue sys-
tem, some of the implications of which are to be found later in this
chapter and in the problems.

It follows immediately from Theorem 4-1 that the other primitive
roots of m are those powers g* for which (k, o(m)) = 1. Either from
this remark or from Theorem 4-3 we have

TrEOREM 4~4. Thereare exactly (o (p)) primitive roots of a prime p.
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PROBLEMS

§ Showthatifordpa = ¢ ordyb = w and (4 u) = 1, then ord, (ad) = u

2 Show that if p = 1 {mod 4} and g 13 2 pnoutive root of p, then so 1
—g Show by a numercal example that this need not be the case
if p=3 (mod 4)

3 Show that 1f p 15 of the form 2™ + 1 and (a/p) = —1, then a 188
primitive root of p

4, Show that if p1s an odd prime and ord, a = £ > 1, then

=1
T ot = ~1 (mod p)
k=1

4-2 Primitive roots of composite moduli Theorem 4-4 mme-
diately brings the following questions to mind Do all numbers have
primstive roots? If mot, which do and how many are there? The
first question 1s eastly answered 1n the negatwve since 8 has none
»(8) = 4, but

ordgl =1, ordg 3 = 2, ordg 5 = 2, ordg 7 =2
On the other hand, since 5 15 a primitive root of 6 there are com-
posite numbers having primitive roots The answer to the second
question s, therefore, not just the set of primes, as one might think

After the primes themselves, the simplest modul to treat are the
prime powers We need a prelminary result

TrEOREM 4 5 (a) 1f p 15 prime, then

a=0(modp") wmphes a” =b" (modp™™) (@)
Jor every pair of postwe snlegers m, 3
{b) If p s an odd prome and pib, then
o = (mod p™*)  umphes  a=b(modp”) (&)
Jor every pawr of positive integers n s

Proof (2) Weusemductionons Assume thata=b (mod p")
Then

a=hp"+b,
and

P = (hp™ P " ? "
ety (omrne 47 Y gy
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Now p oceurs in the numerator of the binomial coefficient

(0)-reer
k) Bl — k)

but it is not present in the denominator if 0 < & < p; hence p

P n (p—k)
(k)” ‘

But also p"+1|p™?, so that a? = b? (mod p"**). Hence (3) is correct
for s = 1 and every n.

Suppose that (3) is valid for s =1, 2, ..., §', for every n, and
suppose thata = b (mod p"). (This congruence is now to be regarded
as the premise of (3) with s = s” + 1.) Then the induction hypothe-
gis with s = 1 gives

( )
k

pn-H

a? = b? (mod p™*!). (5)
Using (5) as the premise of (3) with s = s’ gives

@) = )" (mod p™1¥),
or
apu+1 = bp,'-l—l (mOd pﬂ+(3’+l))’

which is the conclusion of (3) with s = s’ + 1. Hence (3) holds for
every pair of positive integers n, s.

(b) We first prove (4) for s = 1, by induction on n; we suppose
throughout that p > 2 and p}b. Thus we wish to show that

a® = b® (mod p"*')  implies @ = b (mod p").

If a? = b® (mod p?), then also a” = b? (mod p), and, by Fermat’s
theorem, ¢ = b (mod p). Now assume that

a® = b® (mod p™') implies a =Y (mod p*' )

and that
a? = b® (mod p™ ).
Then
a? = b? (mod p™'),
50 that
a = b (mod p™' ).
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Butif ¢ = up™ ™ + b, then
a? = b® + up”brt (mod p¥'Ht)
o p > 2, and 5o plu, whence 8 = u;p™ + b and
@ = b (mod p™),

and the implication follows by mduction on »
To complete the proof of (4), We use induction on s Assume that

™ = """ (mod p"t*')  imples @ =b (mod p")
for every 7, and assume that

o =5 fmod )

Then
(@)™ = @)~ (mod p™),
whence
a? = b (mod p™*1),
50 that, by what we have just proved,
e =b (mod p*)
The result follows by induction on 8

Let p be a prme  Then if p"la and p"*'g, we will wnte for
brevity p"le

TreoREM 46 If p1s an odd prme, ordp 6 = ¢, and p7 (a* — 1),
hen

ordgng = ¢ po@a—d

Proof Assume the hypotheses of the theorem are satisfied If
n < 2, then p"|(a® ~ 1) This 15 not true for any exporent ¢’ < ¢,
since1f p"|(a* — 1), then p|(a® — 1), so that £}’ Hence in this case
ordpna = ¢, which proves the theorem forn < z

If n > z, we get from Theorem 4-5 and the last hypothes:s of the
present theorem that

tpns

a' =1 (mod p")

We must show that a? # 1 (mod p*) of d 15 a proper divisor of tp"™*
Letd=t;p", wherer<n—zand 44, and assume thata"* =1 (mod p")

By Theorem 4-5 agam, a% =1 (mod p™™),
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whence a'’ = 1 (mod p),

sothat #jt;, and ¢t = #;. Since p7| (a* — 1) and p"~"|(a* ~ 1), we have
n—r<z whencen —z=r.

We can use Theorem 4-6 to construct primitive roots of p®, where
pisan odd prime; that is, numbers which belong to " (p ~ 1) mod-
ulop®. Let ¢ be a primitive root of p. Then if p*(g?! — 1),
Theorem 4-6 shows that

n—1

Ol‘dpn g = (P - l)p ’

and g is also a primitive root of p™ for all positive n. If % (g*~! — 1),
then g + p is also a primitive root of p, and

G+p)P Tt —1=¢" 14+ (p—-1)"%p -1
= (p — 1)pg®? # 0 (mod p%),
so that by Theorem 4-6,
ordyn (g +p) = (p — 1)p™7,

and ¢ + p is a primitive root of p” for all positive n. We have thus
proved

TrEOREM 4-7. Any power of an odd prime has a primitive root.

Turning now to other composite numbers, it is convenient to define
a function A(m), called the universal exponent of m:

A1) =1,
e = s
AMP%) = ¢(p%),  pan odd prime,
AT p™ ™) = (AM27), Mpr™Y), - - -, M),
D1, - - - , Dr distinet odd primes.
Euler's theorem can now be strengthened somewhat.
TaeoreM 4-8. If (a, m) = 1, then
a™ = 1 (mod m).

Proof: (@) If m = 2% with « < 2, this is Euler’s theorem.
(b) If m = 2% with @ > 2, a must be odd, so that a® = 1 (mod 23).
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By Theorem 4-5, (42" = ¢ = 1 (mod 2%)
{¢) f m = p°, where p 15 odd, we have Euler's theorem again
(d) Fimally, suppose that m = 2° p1® 7 By (), (b) and
{c), each of the congruences

@@ = 1 (mod 2%),
P8 =1 (modp™) =12 r

holds Since a1l the exponents of @ divide A(m), 1t follows that
@™ = 1 (mod 27),
™ =1(modp™), =12

and hence
@™ =1 (mod m)

As a complement to Theorem 4-8, we have

TheorEM 4-9  M(m) 15 the smallest possiave value of x such that
a” = [ (mod m) for every a prime o m  THAV 13, Gere 13 aluays on
wnteger whach belongs to A(m) (mod m)

Proof  (a) Im=1 A1) =1landord;1=1

@ Hm=2 A2) =landordyt =1

() fm=4 A4)=22andord;3 =2

d) fm=2%a>2 A2%) =272 and ordga 5 = 2?2 For o
ord & = d, then d|2°%, so that d = 2%, where 8 < ¢ — 2 Butit1s
easily proved by induction on « that for « > 3

577 = 1 4 2571,

where hy 1380 odd number  Hence 57 # 1 (mod 2%) and § = a — 2
(e) If m = p* wath p odd A(p*) = »(p), and by Theorem 4-7,
™ has a prumitive root
{f) If ms arbitrary Let m = p™  p™, with 2 < py <
< pr By the first five steps of the proof, there are numbersa;,  ,a,
such that ordye, a; = A(p,*) fors =1, | r BY the Chinese Re-
mamder Theorem, there 1s 2 single integera such that g =g, (mod p.**)
forz =1 , 7, and the order of @ (mod p,*%) 18 the same as that
of ay, for each 1 Hence 1if * = 1 (mod m), then AMp, )|z for each s,
and so A(m), since 1t 15 the LcM of the numbers Mp™), slso divides z
By Theorem 4 8, ordma = A(m)
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An integer whose order (mod m) is A(m) is called a primitive
A-root of m. Theorem 4-9 says in effect that every modulus has a
primitive A-root.

As a combination of Theorems 4-2 and 4-9, we have

TrEOREM 4-10. There are o (A (m)) primitive A-roots of m congruent
to powers of any given primitive A-root.

Notice that in general it is not the case that all the primitive
A-roots are congruent to powers of a single one. For example, if
m = 2%, g = 5, then the only other primitive A-root congruent to a
power of 5 is 13, while 3 and 11 are also primitive A-roots.

Moreover, we can now deduce

TraeorEM 4-11. The numbers having primitive roots are
1’ 2! 4} pa’ 2pal
where p is any odd prime.

Proof: We already know that 1, 2, 4, and p* have primitive roots.
Since
A(2p%) = (A(2), A(@°)) = A(P) = ¢(p%) = »(2p%),

every number 2p® has primitive roots. On the other hand, if
m=2%p; ... 9, with e > 2, p; odd, r > 1, then

Am) < 302Ne(p1™) - - - 0(p) < Fo(m),
and if
m = p*t... p* withr > 1
or if
m = 4p, "1 ... pr withr > 1,

then each of the numbers A(4), A (p;*%) is even, so that again
A(m) < Fo(m).
This completes the proof.

The problem of efficiently finding a primitive root of a given large
modulus ¢ is not simple. It is, of course, a finite problem, and for
specific modulus can be solved by successively testing the elements of a
reduced residue system. A slightly more rapid method is indicated
in Problem 4 at the end of the next section, but it also is laborious for
large g, particularly if ¢(g) has many distinct prime divisors.
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PROBLEMS

1 Show that if g has prumitive roots, there are ¢{p{g)) of them, and ther
product 15 congruent to 1 (modg) if ¢> 6 [Hwnt Represent all the
primitive roots in terms of & siagle one |

2 Find all the primtive roots of 25

*3 It 13 an unproved conjecture that no two conececutive integers, except,
8 and 9, are perfect powers Show that at any rate the only pair z, y satis-
fyig the conditions

Zr—2v=1 2>Ly>1
182,3 [Hint Use Theorem 4-8 and Problem 3, Section 3-7 to show that
ga~t

4 Show thatf g1 8 primitive root of %, then the roots of the congruence

27~ = 1 (mod p?)
are g™, n=1,2 , p—1, that 1s, that these numbers are distinct
roots, and there are no others [Hint Show that the congruence has only
p—1roots Cf Problem 9, Section 3-7]

4-3 Indices Let ¢ be a number having primitive roots and let ¢
be one of them Then the numbers g, ¢%, , g°@ are distmet
{mod ¢), and they are all pnme to ¢, therefare they constitute a
reduced residue system (mod g) The relation between a number a
and the exponent of a power of g which 18 congruent to a (mod g) 15
very similar to the relation between an ordinary positive real number
zand stslogarithm  This exponent 13 called an 1ndex of @ to the baseg,
and wnitten “nd; @”  That 15, ind, a will stand for any number ¢
such that ¢ = ¢ (mod g), 1815 defined only if (e, g) = 1, and 15 umque
modulo ¢(g) The followmg facts are immediate consequences of the
defimition

TrEOREM 4-12  If g ¢ a prumlwe root of g and ¢ = b (mod g),
then
md;a = md, b (mod (¢)),
ind, {ab) = mnd,a + nd, b (mod (g)),
and
md, " = nindya (mod ¢(g))

The procedure for finding the mdices of the elements of a reduced
residue system 1s quite simple 1f & primitive root 3s known  If gisa
rawive 2oot of ¢ comstruct s talle of tw e rows and gy} colamras, of
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which the second row consists of the integers 1, 2, . . ., ¢(g) in order.
In the first row enter g in the first column. Multiply this by ¢ and
reduce modulo g for the element in the second column, multiply this
result by ¢ and reduce modulo ¢ for the element in the third column,
ete. (When the table is complete, the last element in the first row
should be 1.) Then the index of any element of the first row appears
directly below that element.
If, for example, ¢ = 17 and g = 3, we have the table

a: |3|9|1o’13|5|15[11[10 14[ 8| 7| 4|12| 2[ 6| 1
inda: |1]2] 3| 4|5] 6| 7| 8] 9|10]11|12]|13]14]15]16

while if ¢ = 18 and ¢ = 5, we have
a: |5]7[17|13 11

inda: 1112’ 3]

6

By Theorem 4-1, if ord,, ¢ = ¢(m), then

ord - _p(m)
"m0 = G olm)|

so that a is a primitive root of m if and only if (ind a, o(m)) =
Thus in the above table we see that the primitive roots of 18 are 5 and
11, since the only numbers less than ¢(18) = 6 and prime to it are
1 and 5.

Indices are quite useful in solving binomial congruences. For
example, the congruence

10z = 8 (mod 18)
implies
5z = 4 (mod 9),
which implies
ind 5 4 ind z = ind 4 (mod G),
indz = ind 4 — ind 5 (mod 6).
Since 2 is a primitive root of 9, we construct the table as before:
n:|2[4|8|7]5]1
indn: |1]2]3]4|5]6
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Thus mdz=2-5=3(mod6),
whence z =8 (mod 9),
50 that 2 = Bor17 (mod 18)

The investigation of the congruence 2" &= ¢ (mod m), where
(m, €) = 1, can be reduced to the study of the solutions of
2" = ¢ (mod p)
by previously explamned methods But the latter 1s entirely equiva-
lent to
n mdz=mde(medp — 1),
which has soluttons if and only if (n, p — 1)iind ¢, of this condition
18 satisfied there are d = (n, p — 1) roots This eniterion has the
disadvantage that 1t requires knowledge of the value of nd e, the
followng 18 more usefu}
TreoreM 4-13  Let (¢ q) = 1, q beng any number which has
promitwe rools  Then a necessary and sufficeent condstion that the
congruence
2" = ¢ (mod ¢) {6)
be salvable 1s that
£ @I = 1 (mod g),

where d = (n, ¢(g))

Proof By an argument sumilar to that just given for prime modu-
lus, a necessary and for the ity of (6) 18
that md ¢ = 0 (mod d) Thus 15 equvalent to

v(q)

L mde =0 (mode(g)),

or, what 13 the same thmg,
@1 = 1mod g)
If 2 = ¢ (mod 7} 13 solvable, and (m,¢) = I, ¢ 13 sad to be an
nth power residue of m, otherwise a nonremdue
THEOREM 4-14  The number of wncongruent nth power restdues of ¢
5 ¢{q)/d, and these residues are the roots of the congruence
2@H = 1 (mod q)



4-3] INDICES 59

Proof: The second statement is a paraphrase of Theorem 4-13.
Since ¢ has a primitive root g, the roots of the congruence a2 @/ =
1 (mod ¢) are the numbers g* for which

g'¢@/4 = 1 (mod g),

and this requires that dj{. But the number of multiples ¢ of d with
1 <t < o(q) is exactly ¢(g)/d. (Note that this is a generalization of
Theorem 3-24.)

PROBLEMS

1. Show that if g and A are primitive roots of p, then
indy a = ind, a - inds ¢ (mod p — 1).

2. Given that 2 is a primitive root of 29, construct a table of indices, and
use it to solve the following congruences:

(a) 17z = 10 (mod 29) (b) 1723 = 10 (mod 29).
3. Develop a method for solving the congruence
Az* 4+ Bz 4+ C = 0 (mod p)

by use of indices, when p is an odd prime which does not divide 4. (First
show that the given congruence can be replaced by one in which the coeffi-
cient of z% is 1; then, after suitable modifications, complete the square.)
Apply your method to

(8) 17z* — 3z 4 10 = 0 (mod 29) (b) 1722 — 42 4 10 = 0 (mod 29).

4. Let g be a number having primitive roots. Show that k is a primitive
root of g if and only if 2 is an rth power nonresidue of ¢ for every prime 7
dividing ¢(g). [Hint: Write h = g*, where g is a primitive root of g, and
show that each of the allegedly equivalent statements is equivalent to the
equation (k, ¢(g)) = 1.] By eliminating all the appropriate powers of the
elements of a reduced residue system, find all the primitive roots of (a) 13,
(b) 29. (Cf. Problem 3, Section 4-1.) .

*5. Show that for z > 1 the quantity

L v
f@) =L gyt g

-0+ (D a-vrr e+ (Du-+g

where ¢ is prime, ¢ > 2, and y = 2%"7, has the following properties:
(a) For z = 1 (mod g), ¢J|f(z), and for z 3% 1 (mod g), ¢if(z).
(b) f(z) > q.
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(@) () 2) =1

() Tt p % g and plf(z), then p = 1 (mod g*)
Deduce that there exists & prime p=1 (mod ¢"), and then by taking
z=pi. P where each p, = 1 (mod ¢*), that there are infimtely many
primes p = 1 (mod g*) (Cf Problem 4, Section 3-7, where ¢ = 2)

4-4 An to Fermat's A sunple way of
attempting to show that the equation
4yt =2 (4]

has no nonzero solutions for n > 3 1s to show that the infinitely many
congruences
"yt =2 (modp), p=23,5 .
impose bsurd conditions on the vanables For example, m the case
n = 3 the congruence
2+ 9P =2 (mod7)
implies that 7zyz For o 7y, then u® =1 (mod7), so that
w¥==1 (mod 7), and for no choice of signs 1s £ 141==1 (mod 7)
If we coul find mfinitely many primes p such that
2+ = 2" (mod p)

wmplies plryz, then clearly equation (7) could have no nonzero solu-
tion for n = 3 We shall show that this cannot be done, either for
n = 3 or for larger n  The proof depends on the following combina-
tonal lemma

THeoreM 4-15  If the numbers 1, 2, s N are distributed info m

dispornt classes, and f* N > mle, then af least one class contans

the difference of two of s elements

Proof Suppose that the numbers 1, 2, » N have heen put mto m
disjons classes so that no elass contains the difference of any two of its
elements. Let a class having the largest number of elements be ealled
Zy, thenif Z; 15 composed of 74, ) Tm, Wehave N < nym  If the
names are §0 chosen that 7, < x; < < Zny, the ny — 1 differences

I AE =B, Im Ty ®)

are also mtegers between 1 and N, mclusive, and by assumption they

*Here cantrary to our convenbion, the mumber ¢ = 2718 % Toh
an integer



4-4] AN APPLICATION TO FERMAT'S CONJECTURE 61
lie in the remaining m — 1 classes. Let Zp be a class in which the
largest number of differences (8) lie. If Z; contains the 7, differences
To — T1y T — Txy v e ey 9)
then clearly n; — 1 < ng (m — 1). Now the ng — 1 differences
T — Loy Ly — Ty« » - (10)

do not lie in either Z; or Z,, so they must be distributed among the
remaining m — 2 classes. If ng is the largest number of differ-
ences (10) in any single class, then np — 1 < ng(m — 2). Con-
tinuing in this way, we have

Ny — 1L np+l(m - l‘): (11}

for p =1, 2, ..., my, where m; is such that 2, = 1. From (11),
we have
Ty < 1 Tut1
-~ H
m—p) ™ m—w! " (n—p— 1)
and adding all these inequalities gives
ny 1 1 1
< R T
(m—-l)!*(m—l)!+(m—2)!+ +(m—-ml)!

Hence

[.t=1,2,...,n1

<e.

N < nim < mle,
and the proof is complete.

TreoreEM 4-16. There are only finilely many primes p for which
every solution of the congruence

2" + y" = 2" (mod p) (12)

is such that plzyz. More precisely, if p > nle + 1, then (12) has
solutions such that plxyz.

Proof: TFirst suppose that n{(p — 1), so that p — 1 = nr for
suitable 7. Let g be a primitive root of p, and let s, be the smallest
positive residue (mod p) of g”. Then the numbers s, .. ., s, are
the integers 1, 2, ..., p — 1 in some order. We now classify the
numbers s, according to the residue classes of their subscripts (mod n),
so that for each { with 0 < ¢ < n — 1, the numbers

Sty Stqny « + oy St (r—1)n

form a single class, there being n classes altogether. By Theorem
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4-15,1f p — 1 > n'e, then some class contans three elements, say
Se4gn Stekny Stitny SUCk that
Btyyn ™ Stypkn = Sipin
But then
gitam = gtk g g (ra0d ),
whence
g =g*" + " (mod p),

and the numbers z = ¢*, y = ¢%, z = ¢ give the desired solution
of (12)

I nj(p— 1), let d = (n,p — 1) Then by what we have just
proved, the congruence

a4y = 2* (mod p)
18 solvable with pleyz if p — 1 > d% But by Theorem 4-13, any
dth power 13 an nth power residue of p, sinee
(AP0 o (8) 018 o 7™ = ) (mod p)
‘Thus there exist an z,, ¥y, and 2, such that
= yrsy, at= (medp),
and hence
" + " = 2," (mod p)

PROBLEM

Shaw that if 2% + y* = 2* (mod 9), then 3fzyz  Use the result of this
seetion, together with the method of Section 3-5 to show that this 1< an
atypical phenomenon  that for fixed n the congruence

2+ = 2" (mod p7)
has & solution such that pzyz of p 1s sufficiently large and o > 1

REFERENCES
Section 4-4

The mam theorem was first proved by L E Dickson, Journol fur dse
Rene und Angewandle Mathematik (Berhn) 135, 134-141 181 188 (1909)
"The proof given here 18 due to I Schur, Jakresbericht der Deutschen Mate-
matikervereimgung (Lewpzig) 26, 114-117 (1617) Dickson’s proof 15 more
difficult, but shows that equation {12) 15 solvable 1f 7 > eat for sustable e



CHAPTER 5

QUADRATIC RESIDUES

5~1 Introduction. The subject of nth power residues is a large
and difficult one. It happens, however, that for the case n = 2 many
elegant and important results can be obtained by elementary con-
siderations, and it is to these that we now turn our attention. A
fundamental tool in the investigation of quadratic residues is Euler’s
criterion, Theorem 3-24, which was generalized somewhat in Theo-
rem 4-13, namely that a necessary and sufficient condition for a
number @ prime to ¢ to be a quadratic residue of g is that a®®/2 =
1 (mod ¢). (Here ¢ is a number greater than 2 having primitive
roots.) The two problems with which we shall deal are, first, to
extend this criterion to general composite moduli (in so doing we shall
find that it suffices to restrict our attention to odd prime moduli);
and, second, to find an efficient method for determining all the primes
of which a given integer ¢ is a quadratic residue.

The prime 2 plays a rather special role in the theory of quadratic
residues, not so much because of an intrinsic difference between it and
the odd primes (which does exist, as we saw in the discussion of
primitive roots of composite moduli) as because the congruences are
quadratic; in a similar fashion, 3 must be treated separately when
considering cubic congruences. On account of this, we shall use the
symbol p to represent an odd prime throughout this chapter.

6-2 Composite moduli

TrEOREM 5~1. A number a prime to m is a quadratic residue of m
o and only if it is a quadratic residue of all odd prime divisors of m
and is congruent to 1 (mod 4) if m = 4 (mod 8), and congruent to
1 (mod 8) #f 8|m.

Proof: Let
m = 2% H p,-"".

fe==1

63
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Then the congruence
2° = a(mod m)
18 equivalent to the system of congruences
2% = g (mod 2%)
2f=q(modp™), t=1, ,n
80 that & 13 & quadratic residue of m if and only if 1t 15 & quadratie
residue of every prime-power divisor of m
(a} If @ 1s 8 quadrattc residue of p, 1t i3 & quadratic residue of p%,
and conversely (The converse 1s trivial } For if @ 15 & residue of p
1t follows from Euler’s criterion that
2112 = 1 (mod p)
By Theorem 4-5,
27" NeNIZ = 1 (mod p%),

and 50 a 13 a quadratic residue of p* by Euler’s eritenion again I e
18 8 quadratic residue of p and 2,® = a (mod p), then also (—z1)* =
a (mod p), and these are the only solutions, by Lagrange’s theorem
Using the method of Section 3-5, 1t 15 eanly seen that if pif’ (zy) for
each root z; of f(2)=0 (mod p), then the congruence f{z) =0 (mod p*)
has exactly as many roots as the congruence with pnme modulus  In
this ease f{x) = 2% — 0, f'{z) = 2, and smce p 135 odd and plzy, 1t
follows that 2° = a (mod p*) has exactly two solutions {mod p*) f
a 13 & quadratic residue of p
(b} For modulus 2* the situatton 13 more compheated If @ 15 0dd,
() 2? = a (mod 2) 15 always uniquely solvable,
(1) a? = a (mod 4) 1s solvable if and only f @ = 1 (mod 4},
it then has two roots,
(n) 2? = e (mod 2%), for a > 3, 1s solvable if and only if
@ =1 (mod 8), 1t then has four roots
The first statement 1s obvious, and the second follows immediately
upon noting that any odd square 13 congruent to 1 (mod4) (The
two solutions are, of course, &1 ) For the case « > 3, recall that it
was shown in the proof of Theorem 4-9 that 5 13 a pimutive A-root of
2%, and so the numbers 5 5%, 5%, , 5" are distmet (mod 2%)
Simce by the bmomual theorem {1+ 2%)" =1+ 4n (mod 8),
5" =1 (mod 8) of and only o n1seven Thus 5% 5% 8%, &2
e 2773 wnenbers witat are disiinred oo £ s witick stee sl coxr
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gruent to 1 (mod 8). But since there are exactly 2%~% pumbers in a
complete residue system (mod 2%) which are congruent to 1 (mod 8),
it follows that every number congruent to 1 {mod 8) is congruent to
52" for some 7, 50 that every @ = 1 (mod 8) is a quadratic residue of
2¢. (If 5** = a (mod 2%), the congruence z* = a (mod 2%) has the
solution z = 5™) On the other hand, every odd square is of the form
8k + 1, so that 2® = a (mod 27) is certainly not solvable unless
a =1 (mod 8).

Assume that 5% = a (mod 2%), and let = be any other solution of
this congruence, so that also 2% = a (mod 2*). Then 2* — b =
(@ — b)(z + b) = 0 (mod 2%). Both z and b are odd, so z — b and
z -+ b are even; since (x — b, = + b) = 2(=z, b), one of them has
2 as a simple factor. Since

:v——b.:u—{-b
2 2

one factor must be divisible by 272, that is,

b
2

Hence z = =4-b (mod 27!), and z must be congruent to one of =b,
#+b + 2°71 (mod 2%). It is immediately verified that each of these
four numbers is a solution.

Combining the results of (a) and (b) gives Theorem 5-1. By the
Chinese Remainder Theorem, the number of roots of z? = a (mod m)
is the product of the numbers of roots of the congruences with prime-
power moduli. As shown above, if a is a quadratic residue of m, this
number is 2 for each odd prime-power factor, and 1, 2 or 4 according
as « is 0 or 1, 2, or more than two, where 2*|m. Hence we have

= 0 (mod 2°72),

= 0 (mod 2°72).

TueoreM 5-2. If (a,m) = 1 and the congruence z°> = a (mod m)
is solvable, it has exactly 2°%" solutions, where o is the number of
distinct odd prime divisors of m and 7 15 0, 1, or 2 according as 4}m,
2% m, or 8|m.

PROBLEMS

1. Decide whether 5 is a quadratic residue of 44.

2. Show that the product of the quadratic residues of a prime p is con-
gruent to 1 or —1 (mod p) according as p= —1 or 1 (mod 4). [Hint:
Write the residues of p in terms of a primitive root.}
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*3 Prove the following generahzation of Wilson’s theorem The product
of the positive Integers less than m and prume to m 13 congruent to
—1{modm) f m =4, p% or 27% and to 1 otberwise. {Hunt Proceed
a8 11 the second proof of Wilson’s theorem, associating @ snd 6’ if aa’ =
1 (modm) Use Theorem 5-2 to count the elements associated with
themselves ]

5-3 Quadratic residues of primes, and the Legendre symbol  As
waa seen 1n Section 5-2, the quadratic residues of powers of 2 can be
given exphaitly, and the quadratie resdues of powers of an odd prime
are 1dentical with those of the prime itself Consequently, there re-
mams only the mvestigation of quadratic residues of odd primes
Hereafter we shall make use of the simphiying notation of the
Legendre symbol {a/p), introduced at the end of Chapter 3 It will
be recalled that for (e, p) = 1, we put

(/) = { 1,  1f a1sa quadratie residue of p,
-1, if ¢ 13 & quadratic honresidue of p

For completeness we put {a/p) = 0 if pla, so that {(a/p) 1s now
defined for every odd prime p

TueoREM 5~3 The Legendre symbol (o/p) has the following
properties
(a) (ab/p} = (a/p)(d/p) Thus the product of two residues or
two nonrestdues 13 a restdue, the product of a residue and a non
residue 15 a nonresidue
) If e = b (mod p), then (a/p) = (b/p)
(¢} (*/p) = 1 pla
@) (~1/p) = (-1 072
Proof The first two parts are obvious if plab, so suppose that
pleb  In the proof of Theorem 3 24 1 was shown that (a/p) =
e 112 (mod p)  Hence
(ab/p) = ()P=1% — a—DIEEIZ = (o) (b/p) (mod p),

and since (a/p) assumes only the values 1, 1t follows that (ab/p) =
{a/p}(d/p) Property (d) also follows immediately from this con-~
gruence Properties (b} and (e) are obvious

1t follows from Theorem 5-3 that i investigating the Legendre
symbol (a/p), there will be no loss n generality i assuming that a 15
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a positive prime. For example, Theorem 5-3 shows that
(—48/31) = (—1/31)(48/31) = (—~1/31)(3/31)(16/31)
= (—1/31)(3/31)
= (30/31)(3/31) = (2/31)(3/31)(5/31)(38/31)
= (2/31)(5/31),
so that (—48/31) can be evaluated either from
(—48/31) = (—1)}®-1(3/31) = —(3/31)
or from
(—48/31) = (2/31)(5/31).
In general, (a/p) can be written as the product of Legendre symbols,
in which the first entries are the distinet prime divisors of @ which

divide a to an odd power.
Although it will be used only in the case where @ is prime, the
following theorem is valid for all a’s for which pla.

TaroreM 5-4 (Gauss’s lemma). If p is the number of elements of

the set a, 2a, ..., 3(p — 1)a whose numerically least residues
(mod p) are negative, then
(a/p) = (=D~

Ezample: Ifa = 3, p = 31, the numerically least residues (mod 31)
of3-1,3-2,...,3-15are3, 6,9, 12, 15, ~13, =10, —7, —4, —1, 2,
5,8, 11, 14; thusp = 5, (3/31) = —1, and from the above numerical
example, (—48/31) = 1.

Proof: Replace the numbers of the set @, 2a, ..., 3(p — 1)a by
their numerically smallest residues (mod p); dencte the positive

ones by r1, 75, . . . and the negative ones by —n/, —r5’,.... Clearly
no two r;'s are equal, and no two r;’s are equal. If mya = r; and
mya = —r; (mod p), then r; =r; would imply a(m; + my) =

0 (mod p), which implies m; 4 my; = 0 (mod p), and this is impos-
sible because the m’s are strictly between 0 and p/2. Hence the
(p — 1)/2 numbers r;, 7, ave distinct integers between 1 and (p — 1)/2
inclusive, and are therefore exactly the numbers 1, 2, ..., (p — 1)/2
in some order. Hence,

p—1 p—1
c9 e g = (—1)
a-2a 7 ¢ (-1 2

a2 = (—1)* (mod p),

! (mod p),
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Since also a2 = (a/p) (mod p}, 1t follows that
(a/p) = (~1)" (mod p),

(a/p) = (~1)*

In distinction to Euler's enterion, Gauss's lemma can be used to
characterize the primes of which a given integer @ 13 a quadratic
residue  For example, if @ = 2, then 4 13 the number of numbers 2m,
with 1 <m < (p —1)/2, which are greater than p/2, this 1s
cleatly true if and onlyif m > p/4 Thus if we wnite [z] to stand for
the largest mteger not exceeding z, 1t follows that

and finally,

I now
p=8k+1,  then p=4k—[2k+}}=4k—2k=0 (mod 2),
p=8k+83,  then pu=4k+1—[2k-I]=4k+1—2k=1 (mod 2),
p=8k+5,  then u=4k+2—[2k+1+1]=2k+1=1 (mod 2),
p=8k+7,  then p=dA+3—[2k41+3)=2k+2=0 (mod 2),
and we deduce that 2 1s a quadratic residue of primes of the form
8k = 1 and a nonresidue of primes 8% = 3 Since 1t happens that the
quantity (p? — 1)/8 satisfies exactly the same congruences as p
above, this result can be stated 1 the followng form
Taporest 55 (2/p) = (—1)% VI8
As an application of Theorem 5-5, we have
THeoreM 5-6 (a) 21sa primatwe root of the pryme p = 4+ 1
of ¢ 23 an odd prime
(b) 2saprimtwerootof p = 2q + L1f q1s @ prime of the form
4A+1
{c) ~21saprimtwerootof p = 2q ++ L1f q1s @ prime of the form
4% —~ 1

Proof (a) If ord, 2 = ¢, then #jp — 1, which 35 equivalent to
saymg that {4 Asde from 4, every proper divisor of 4q 13 also a
divisor of 2¢, and of 2* = 1 (mod p), then p 15 5 and ¢ 15 not prume
Hence 1t suffices to show that 2°7 £ 1 (mod p) But
20 = 270 = (0/p) = (~1)F IR =~ ] (mod p)
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Parts (b) and (c) can be proved in a similar fashion. Part (a) shows
that 2 is a primitive root of 13, 29, 53, . . . ; part (b) shows that 2isa
primitive root of 11, 59, 83, .. ., and part (c) that —2 is a primitive
root of 7,23,47,.... Itisanunproved conjecture that 2is a primitive
root of infinitely many primes, which would follow from Theorem 5-5
if it could be shown that there are infinitely many primes p of the
kinds described in (a) and (b).

Referring to (a), this requires a proof that the function 4z -+ 1
assumes prime values for infinitely many prime arguments. Un-
fortunately, there is no nonconstant rational function known to have
this property. If one could prove that the function = - 2 has it, one
would have proved a conjecture which is one of the outstanding
problems in additive number theory: that there are infinitely many
“twin primes,” such as 17 and 19, or 101 and 103.

PROBLEMS

1. Apply Gauss’s lemma fo determine the primes of which —2 is a
quadratic residue, and show that your result is consistent with Theorem
5-3, parts (a) and (d), and Theorem 5-5.

2. Complete the proof of Theorem 5-6.

*3. Show that 7 is a primitive root of any prime of the form 24* 4 1 with
n> 0. [Hini: Show first that it suffices to prove that (7/p) = —1, and
then show that any prime of the specified form is congruent to 3 or 5
(mod 7). Note that2¢ = 2 (mod 7).]

4. Show that the numbers 6% ~ 1 and 6% + 1 are twin primes if and
only if the equation & = 6zy 3- x =& y has no solution in positive integers
z and y for any of the four choices of sign. [Note that if 6k -+ 1 = mn,
then m = n = %1 (mod 6).] Show that this characterizes all the twin
primes except 3 and 5.

5-4 The law of quadratic reciprocity. Gauss’s lemma ean be used
to establish a deep property of the Legendre symbol which is an
essential tool both in determining the quadratic character of a prime
g (mod p) and in finding the primes p of which ¢ is a quadratic
residue.

TaeorEm 5-7 (Quadratic reciprocity law). If p and g are distinct
odd primes, then

(p/9)(g/p) = (—1)}®~ DD,
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In other words, (p/q) = (g/p) unless both p and g are of the form
4k — 1, 1 which case (p/g) = —(g/P)

Proof By Gauss’s lemma, the numbers u and » 1n the equations
o/p) = (=1, /9 = (=1
are the numbess of the multiples

0 2q,

and
-1
72, ,gz—p

whose absolutely smallest residues (mod p) and (mod g) respectively
are negatwe, and we need only show that

ptr=22t L2 )

If y 18 chosen so that
- 12) <gr-—-py < gv
then clearly gz — py 1s the numerically smallest residue of gz (mod p)
From this mequality we get
¢ 1 1
E _ley<®yl
? 2 + 2

Thus y 1s unique and non-negative, if y = 0 then gz — py = gz > 0,
and there 1s no contribution to i in this case Moreoser, we see that
forz < (p - 1)/2,

@ _1 _g-1
» 253

so that also y < (¢ — 1)/2 The number x denotes therefore the
number of combinations of z and y from the sequences

>

) 1,2,
and

-1
(@) Ly, 122,



5-4] THE LAW OF QUADRATIC RECIPROCITY 71
respectively, for which

0>gx—py>-—§-

Similarly, » is the number of pairs z and y from the sequences (p)
and (g) respectively, for which

0>py——qx>——§-

For any other pair « and y from (p) and (g) respectively, either

P
Py~ g5 >
or
Py—ge< —1;

let there be A of the former and p of the latter. Then clearly

-1 g—1
= =utr+r+n

Finally, as 2 and y run through (») and (g¢) respectively, the num-
bers
r _pt1

x—-——z——-—a: and Y

41
/=Lé___y

run through the same sequences, but in the opposite order. And if
Py — gxr > p/2, then

Fea = p (TR ) P_tl_)
py qx—p(z y> q<2 z

' P9 . pP-¢ _P_ _4.
== (py —g2) <=5~ ~ 5 2
Hence N\ = p, and
-1 ¢—1
_p__2__..-q—2-—='u+y+2)\5p+v(m0d2).

By combining the law of quadratic reciprocity with the properties
of the Legendre symbol mentioned in Theorem 5-3, it is easy to
evaluate (g/p) if p and g do not lie beyond the extent of the available
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tables of factorizations of integers For example, 2819 and 4177 are
both primes and 4177 = 1 (mod 4), so that
(2819/4177) = (4177/2819) = (1358/2819) = (2 7 97/2819)
(2/2810) (7/2819) (97/2819)
= —1-- (2819/7)(2819/97) = (5/7)(6/97)
= (7/5)(2/97)(97/3)
= (2/5)(1/3) = —
and 50 2819 1s not & quadrahc resldue of 4177
M , the law can be used to determine
the primes p of which a given prime ¢ 13 & quadratic residue  This
result, which 15 contained in the next theorem, has sometimes been
taken as the quadratic reciproeity law, rather than Theorem 5-7

Il

TrEOREM 5-8  Euery p 5 q can be uniquely represented an the form
gk =@, where 0 <a < 4g and a =1 (mod 4) For a fized odd
prime q, the solutions of the equation {g/p) = 1 are exactly the primes
p # gsuch that the corresponding a 13 a quadratic residue of g, thatts,
(g/p) = (a/q) The numbers a such that

0<a<4g a=1(mod4) and (a/qy =1, (1)

are grven by the least posine residues (mod 4q) of the numbers 12,

[

Proof Clearly every odd number can be wntten 1n the form
gk’ + o’ where 1 < o’ < 4¢ and @’ 1s0dd If @’ =1 (mod 4},
takea = @’and b = &', whileif o’ = —1 (mod 4), takes = dg — a’
and A = A’ + 1 Thus every odd number, and therefore every p,
has a representation either as 4¢k + @ (if o' — 1 (mod 4)) or as
4gk — o (1if @ = —1 (mod 4)) This proves the first sentence

If p = a (mod 4g), then p = 1 {mod 4) so that

(g/p} = (p/g) = (a/9)
If, on the other hand, p = —a (mod 4¢), then p = ~1 {mod 4), and
(@/p) = (~1)!O"DED(p/g) = (~ 1)V (_g/q)
= (—1)HED Ko (e (g /g
= (=D WD (a/g) = (a/g)
Thus always (¢/p) = (a/q), which proves the second sentence
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Finally, if (a/q) = 1, there is an z such that
?=qa(modg) and 1<Z<zZLqg—1,
whence also
(g—z))=a(modg) and 1<Lg—z<Lg—1
Since either z or ¢ — « is odd—say z'—we have
z?=a(modg), 1<2'<¢g—2 2 '=1(mod2).
But then
z'? = 1 = a (mod 4),

s0 that
z'? = a (mod 4¢),
and the proof is complete.
To illustrate, take g = 3. Then the only integer satisfying the con-
ditions (1) is 1, so that 3 is a quadratic residue of primes 12k =+ 1.
Every other odd number is of one of the forms 12k 2= 3 or 12k - 5,

and no prime except 3 occurs in the progressions 12k - 3. Hence
(3/p) is completely determined by the equations

1, if p = +1 (mod 12),
@/p) = oo
—1, if p= 45 (mod 12).
Similarly, taking ¢ = 17 we consider the squares
12, 8%, 5%, 72, 9%, 112, 132, 157,
which reduce (mod 68) to
1,9, 25, 49, 13, 53, 33, 21.
We have, that 17 is a quadratic residue of primes of the forms
68k £+ 1,9, 13, 21, 25, 33, 49, and 53,
and a nonresidue of primes of the forms
68k =+ 5, 29, 37, 41, 45, 57, 61, and 65;
17 itself is the only prime of the forms 68% == 17.
.In general, out of the 2¢ progressions 4¢k =+ a, ¢ — 1 contain only
primes of which ¢ is a residue, ¢ — 1 contain only primes of which ¢ is

a nonresidue, and two (either 4¢k % ¢ or 4gk = 3g, according as
g =1 or 3 (mod 4)) contain no primes besides g itself.
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Determining the primes of which a composite number 13 5 quadratie
resdue 18 hat more l d  To 1l consider the
problem of finding the primes p for which (10/p) = 1 Thus requires
that ether (2/p) = (5/p) =1 or (2/p) = (5/p) = —1, =0 that
erther

p= =1 (mod 8) and  p= %1 (mod 10)
or

p=23(mod8) snd p= =3 (mod10),
all combmations of signs bemg allowed Thus we have the following
parrs of congruences, each pair to be solved sunultaneously

p =1 (mod8) p= —1(mod8) p =1 (mod 8)

p = 1 (mod 10} p= —1 (mod 10) p= -1 (mod 10)
~1(mod8)  p=3(mod8) p= —3 (mod8)
1 (mod 10} p =3 (mod 10) p = —3 (mod 10}
3 (mod 8) p= —3 (mod 8)

—3 (mod 10)  p = 3 (mod 10)
Sulvmg (by the method of Problem 3, Section 34, for example), we
obtam p=1,-1,9,31,3, 3 27,13 (mod 40),

that 15, 10 15 & quadratic residue of the primes 40k + 1,3, 9, 13, and a
nonresidue of the others

PROBLEMS

1 Evaluate the Legendre symbols (503/773) and (501/773)

2 Charactenze the primes of which 5 15 & quadratic residue, those of
whick 8 13 & quadratie residue

3 Show that1f p = 4m + 1 and d|m, then (d/p) = 1 (Hint Letgbe
a pnme divisor of m, and consider separately the cases ¢ = 2and ¢ > 2]

4 Deduce from the representation N = 6119 = §22 — 5 11?thataf p|¥,
then (5/p) = 1 Use this to find the factonzation of N (It suffices to
consider p < 80 ) Use simular 1deas to factor 43993 = 211* — 24 33

5 Prove that 475118 prime

5~5 An application. It 1s clear that if 2 given imteger @ 13 con-
gruent to 1 (mod p) for every prume p, then a = 1, smee p|(c — 1)
wmphies p £ Ja] + L ualesse — 1 = 0 Here we have an mstance of
the following prmeiple of an assertion nvolving s congruence holds
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for every prime modulus p, then the statement with the congruence
replaced by the corresponding equation may be implied. With this in
mind, it is natural to ask whether it is true that if, for fixed integers a
and n, @ is an nth power modulo p for every p, then @ must be an nth
power. (Saying that a is an nth power (mod p) means, of course, that
a is congruent to the nth power of some integer; in other words, that a
is an nth power residue of p.) Unfortunately, this is not quite the
case: if the congruence 2" = a (mod p) is solvable for every p, then
a = b" for some b if 8n, but if 8}n, either a = b” or a = 2"/%".
Powers of 2 higher than the second cause difficulty here, just as they
did in the study of primitive roots. (CI. Problem 1 at the end of this
section.)

At the present time, the theorem just stated cannot be proved in a
simple way. Even in the special case n = 2 which we now treat, it is
necessary to use a rather deep result about the existence of primes in
certain arithmetic progressions.

THEOREM 5-9. A fized inleger is a quadratic residue of every prime
if and only +f it is a square.

Proof: If a = b% the congruence z? = a (mod p) has the solution
z = b (mod p) for every p.

Suppose, on the other hand, that @ is not a square. Then it can be
written as £m®p;py - - - p,, where r > 1 and p; % p; if 7 % j. Sup-
pose first that a is positive; then we wish to show the existence of a
prime p such that

(a/p) = (m*p; -+ p./P) = (p1/P) -+ (/D) = —1.

We attempt to find a p such that (p;/p) = 1 if 1 <1 < r, while
(p-/p) = —1. Here, of course, one of the primes py, . . ., p, may be
2. 'But since 2 is a quadratic residue of primes 8k 4= 1, and a non-
re§1due of primes 8k =+ 5, the following statement is true for every
prime g:

If p = 1 (mod 4g), then (¢/p) = 1. On the other hand, for each ¢
there is a u such that glu, » = 1 (mod 4), and if p = u (mod 4¢),
then (¢/p) = —1.

The first part is obvious. When g = 2, u may be taken to be 5 in
the second part, while if ¢ > 2, » may be taken as any of the N num-
bers remaining out of the g integers between 1 and 4q which are con-
gruent to 1 (mod 4), after the removal of (a) the least positive
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residues (mod 49) of the (g — 1)/2 squares 1%, 8%, , (g — 2)% end
{b) that one of ¢, 3¢ which 1s congruent to 1 (mod 4) Simce

—1=1215y,

such an nteger u exists
Now consider the system of congruences

z =1 (mod 4p;)

z =1 {mod 4p,)
xz = u (mod 4p,),
when r > 1, or the single congruence
z = u (mod 4p;)
when r = 1, where u 15 the number charactenzed above, with ¢ = p,
or p; For r > 1, the necessary and sufficient conditton that the
system be solvable 1s, by Theorem 3-12, that for all s and 5,
p. 4p)i(e — &),
wherec, = 11f s <rand¢ =uif 1 =r Smcec, =1 (mod4) for
every 1, this requirement is clearly satisfied, so that the system can be
replaced by a single congruence
z=1' (moddpy  p),
where (u’, 4p; 2)=1 If now p=4dp Pk A4y or
P = 4pik + u, 1 the cases r > 1 and r = 1, respectively, then
(e/py=1 1 (-1})=-1,
and 1t 13 seen that in the case @ > 0, the theorem 1s a consequence of
the famous
DiricrLET’S THEOREM  If 8 and ¢ are relatuely prime, there are
wnfimtely many primes of the form sk + ¢

Proofs of special cases of Dirichlet’s theorem have been indicated
i Problem 4 of Section 3-7 and Problem 5 of Section 4-3 The
general theorem 18 proved 1 Volume IT of this work

If 6 = —m? then (a/p) = —1 of plo and p = ~1 (mod4) If
1, » P& 13 any set of primes of the form 4k — 1, then the number
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4py ...px — 1 has a prime divisor of this same form distinct from
Dy, - .-, P, SO there are infinitely many primes of this form, and in
particular there is one which doesnot dividea. For thisp, (a/p)=—1.

If a = —m?p; - - p,, where r > 1 and p; 5 p; if 7 7 j, then we
must find a p such that pla and

(—=1/p)(p1/p) ... (p:/P) = —1.

But if p is a prime for which (—a/p) = —1, as determined above,
thenp = 1 (mod 4), so that (a/p) = (—a/p). The proof is complete.

PROBLEMS
1. Show that the congruence
22 = 27 (mod p)

has a solution for every prime p, if « > 3. [Hini: Consider the factori-
zation

g2 -9
= @ 2)(@*+2) (@~ 1)+ 1) ((@+1)241) @427) - - @77 4227,

and show that every p divides one of the first three factors for suitable z.]

2. Show that if the congruence z” = a (mod m) is solvable for every m,
then @ is an nth power. [Hint: Consider the moduli p=*?, where p°|la
and « is positive.]

5-6 The Jacobi symbol. As was pointed out at the end of the
proof of the law of quadratic reciprocity, it is necessary to have
available rather extensive factorization tables if one is to evaluate
Legendre symbols with large entries. Partly to obviate such a list,
and partly for theoretical purposes, it has been found convenient to
extend the definition of the Legendre symbol (a/p) so as to give
meaning to (¢/b) when b is not a prime. This is done in the following
way: put (a/1) = 1, and if b is greater than 1 and odd, put

(a/b) = (a/p1)(a/p2) -+ - (a/Py), @)

where pyp, - « - p, is the prime factorization of b, and the symbols on
the right in (2) are Legendre symbols. Then the symbol on the left
in (2) is called a Jacobi symbol; like the Legendre symbol, it is unde-
ﬁ.ned for even second entry. As we shall see, many more of its proper-
ties are similar to those of the Legendre symbol, but there is one
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erucial point at which the analogy breaks down 1t may happen that
(a/b) = 1 even when a 1s not a quadratic residue of b  For 1t 18
clearly necessary that each of the Legendre symbols {a/p,) have the
value 1 1n order for a to be a residue of b, while (a/b) = 1 if an even
number of the factors i (2) are —1 while the remainder are +1 On
the other hand, a 13 certainly not a quadratic residueof bif (¢/b)=—1
The following theorem Iists properties of the Jacob1 symbol which
were proved for the Legendre symbol i Theorems 5-3, 5-5, and 5-7,
together with one (the second) which 1s peculiar to the extended
funetion
TrEOREM 5-10  The Jacobr symbel has these propertres
(2) (2:22/8) = (a1/b){az/b)
(b) {afbids) = (a/bo) (/b))
(c) If a1 = ey (mod b), then (a1/b) = (a2/b)
@ (=1/b) = (=072
(e) (2/0) = (=1
(©) If (a,b) = L, then (a/b)(bfa) = (—1)ie~V to-v
Here the second entry in each symbol 1s o positue odd number
Proof (@) Putd = p, p» Then
(@102/b) = (maz/p1)  (ma2/py),
and since these are Legendre symbols,
(@102/) = (ar/p1)  (@1/P}@a/Pr)  (@2/Pr) = {a1/b){an/b)
(b) Put b, — py prondb, - p"  p’ Then

(a/biby) = (@/p  ppy'  p)
(/) (@/p))(a/p’)  /p)))
= (a/br)(a/bs)
(¢) If ay = g, (mod b) and b = p, Pry then ¢, = a5 (mod p,)
fore =1, ,r Hence (a1/p,) = (az/p,} and

@/8) = (@/m)  (@/p) = (az/p)  (0a/Pe) = (ay/b)
{d) Putd = py 2 Then

=1 = T (=1/p) = TT -y

z
or (—1/8) = (=1 @)
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But if m and n are odd, then
(m — 1)(n — 1) = 0 (mod 4),
mn —1=m+n— 2 (mod 4),

mn—-l__:m——l
2 2

+ 22 ! (mod 2).

Repeated application of this fact shows that

Lpi—1_prepe—1
i§1 5 = 5 (mod 2),
so that (—1/b) = (—=1)&"V/2 by (3).

(e) The proof of this is the same as that just given, except that,
using the fact that m? = 1 (mod 8) if m is odd, we deduce from the
congruence

(m? — 1)(»® — 1) = 0 (mod 64)
that
m?2—1 n?—1 (mn)®

-1
P + i 3 {mod 2).

() Puta=py-+-p, b=p--p/ . Then

8

(@) 6/a) =TT @/p) TL @/p5)

= 11 11 toy/p!) - 11 11 0/29)

i= i=14i=1

=TI TT (ps/p) (0 /)

ol {=

[
[

=

.
P
-t

r T

3 3 pi=l pi—1 pi=l 3 pi-1
= (=1)i=ti=1 I = (—1)i= AR
= (—1)¥e-D 36D

Because the laws of operation and combination are the same for
the two types, Jacobi symbols can be used (and according to the same
rules) in evaluating Legendre symbols, even though they do not give
complete information about the quadratic character of @ modulo b;
all that is required is that one begin with a Legendre symbol. This
means that the first entry in each symbol does not have to be factored,
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except that powers of 2 must be removed Thus, using the numerical
example considered earlier, we have
(2819/4177) = (4177/2819) = (1358/2819) = (2/2819)(679/2819)
= —(679/2819) = (2819/679) = (103/679)
—(679/103) = — (61/103) = — (103/61)
—(42/61) = — (2/61)(21/61) = (61/21)

= (19/21) = (21/19) = (2/19) = —1,
and we can agam conclude that 2819 1s a nonresidue of 4177

PROBLEM
Evaluate (751/919), both with and without the use of Jacobs symbols
The entries are primes
REFERENCES
Section 5-5

The general theorem stated in the first paragraph 1s due to E Trost,
Nieuw Archief voor Waskunde (Amsterdam) 18, 58-61 (1934) It has been
generalized by H Flanders Annals of Mathematics 57, 392-400 (1953)



CHAPTER 6

NUMBER-THEORETIC FUNCTIONS AND THE
DISTRIBUTION OF PRIMES

6-1 Introduction. A number-theoretic function is any function
which is defined for positive integral argument or arguments. Euler’s
g-function is such, as are nl, n? ¢, etc. The functions which are in-
teresting from the point of view of number theory are, of course, those
like ¢ whose value depends in some way on the arithmetic nature of
the argument, and not simply on its size. Two of the most interesting
of such functions are ~(n), the number of positive divisors of n, and
o(n), the sum of these divisors. These functions have been treated
extensively in the literature, partly because of their simplicity and
partly because they occur in a natural way in the investigation of
many other problems. For this reason we shall pause briefly to dem-
onstrate some of their fundamental properties. Recall that, as noted
in Chapter 3, a number-theoretic function which is not identically zero
is said to be multiplicative if f (mn) = f(m)f(n) whenever (m,n) = 1.

TaroREM 6-1. The functions ¢ and 7 are multiplicative.

Proof: Assume that (m,n) = 1. Then by the Unique Factoriza-
tion Theorem, every divisor of mn can be represented uniquely as the
produet of a divisor of m and a divisor of n, and conversely, every such
product is a divisor of mn. Clearly this implies that r is multiplica-
tive, and that

Zdzd/ = Z d”y

dlm d'ln d"imn

so that also ¢(m)o(n) = o(mn).

If f is any multiplicative function and the prime-power factoriza-
tion of 7 is

then clearly
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and so the function 15 completely determined when its value 13 known

for every prime-power argument In the cases at hand, we have
() =atl

1
and o) =1+p+ +1J“=ppT1

oL

‘Thus we have proved

TraeoreM 62 Ifn = p*™ P, then
12 L
)= (@+1) end on)=1I—~=———
i=1 w1 Pl
There 1s another way of proving the multiplicativity of ¢ and 1
which uses a basic property of all multiplicative functions
TueoreM 6-3  If f 19 multiphicative and F 1s the funclion defined by
the equation
Fn) = ﬂZf @),
d
then F 13 also mulliplicative
Remark The multipheativity of ¢ and = follows immediately from
the relations

op)=Xd m)=ZX1
e o

since the functions f, and f; defined by the equations
fimy=n and fa(n)=1 foralln
are obviously multiplicative
Proof Let (m,n) =1 Then every divisor d of mn can be written
umquely as the product of a divisor d; of m and a divisor d; of n, and
(d1,dz) =1 Hence
Flrm) = 2 fd) = T fldids) = T f(d0)f(d)
dimn dtn dm
din diln
= T f{d) I f(dg) = F(m)F(n)
dilm diin
We shall see in the next section that the converse of Theorem 6-3
also holds

A problem that was of great interest to the Greeks was that of
determining alt the perfect numbers, that is, numbers such as 6 which
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are equal to the sum of their proper divisors. In our notation this
amounts to asking for all solutions of the equation

a(n) = 2n.
It was known as early as Euclid’s time that every number of the form
n = 2P71(2P — 1),

in which both p and 2P — 1 are primes, is perfect. This is easy to
verify:

22 ~1 (22 —~1)2 -1
“o(n) = 51 (@ —1) 1 = (27 — 1) 2" = 2n.

It happens that a partial converse also holds: every even perfect
number is of the Euclid type. To see this we put n = 28717/,
where k£ > 2. Then

o) = o(@Ne(n') = (2¥ — Da@@’),
so that if » is perfect, it must be that
(2% — Do(n') = 2n = 2%n’',
This implies that (2¥ — 1)|n’, so we put n’ = (2¢ — 1)n’’ and obtain

a(n') = 2%n".

H ! . . .
Since n” and n'’ are divisors of n’ whose sum is
7 3 7 3
n'’ 4 (@F — D’ = 280" = o(n),

it must be that they are the only divisors of n’, so that n’ must be
prime, and so n'' =1, n’' =2~ 1. Thus n = 2¥1(2F - 1),
where 2¥ — 1 is prime; this can happen only if k itself is prime.

There are two problems connected with perfect numbers which
have not yet been solved. One is whether there are any odd perfect
numbers; various necessary conditions are known for an odd number
to be perfect, which show that any such number must be extremely
large, but no conclusive results have been obtained. The other
question is about the primes p for which 27 — 1 is prime. These
Mersenne primes 2° — 1 are completely known for p < 2300 (the
corresponding p’s are 2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521,
607, 1279, 2203, 2281), but it is not known whether there are infinitely
many such primes.
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Aside from ¢, ¢, and r, the function with which we shall be most
concerned 1 this chapter 1s x(z), already defined in Chapter 1 as the
number of primes not exceedingz  (We now drop the restriction that
all varables are integer-valued ) It was shown there that »(z) -
creases ndefinitely with z, that 1s, that there are infintlely many primes
‘We now give another proof, which depends on the Umque Factonza-
tion Theorem

Assume that there are only k prunes, say P, ..,pr By the
Unique Factonzation Theorem, every integer larger than 1 can be
wnitten uniquely as the praduct of a square-free number (that 1s, an
mteger which 1s the produet of distinct primes) and a square  But
with only % primes at our disposal, there are only

k k — ok x
(1)+ +(k—l)+l_2 1<2

square-free numbers, and there are not mare than Vn perfect squares
lessthanarequalton ‘This means that there are fewer than 2* vn
positive integers not exceeding 7, which 13 obviously falseifn > 2V/n,
that 15 of Vi > 2¢ Actually, this argument proves a lttle more,
namely that
log n

2log 2

For later use 1n this chapter we now prove a general combinatoral
theorem of very wide applicability (The product representation for
the -function, for example, 13 a special case ) The result 1s sometimes
called the principle of cross-classification

2™ > Vo, or  w(n) >

Taeorem 64 Let S be a sel of N dustanct elements, and let 8, N
8; be arbutrary subsels of S contazning Ny , N, elements, respec-
twely For 11 <1< <l&r, let S, 1 be the niersec-
twon of S,, 8;, » 8y, that 1s, the set of all elements of S common to
8 8, , 8, andlet N,,  be the number of elemenis of S,,

Then the number of elements of S not wn any of Sy, , 8rts
K=N—- T M+ T No- ¥ Ng-t
160y 1€ sr 1< chge

T (~D)P »

Remark  To obtam the product formula for the g-function, take S
t0 be the set of integers 1, ,n,andfor1 < k < 7, take S to be the
et of demnents of § whadh are drnsble by 7, wheten = ps ™
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If djn, the number of integers s < n such that dls is n/d; hence

n n 1
n)y =n— Z ~ 4 _-—_...:nH(l——).
e(n) 1<i<r By 1.<_i2<:i_<_r DiD; pln 4
Proof: Let a certain element s of S belong to exactly m of the sets
Sy, ...,8. If m=0, s is counted just once, in N itself. If

0 < m < r, then s is counted once, or (7g> times, in N, (T’ ) times in

the terms N;, ZL times in the terms N;;, etc. Hence the total con-

tribution to K arising from the element s is

B -()+G) -+ (f)=a-v-0

PROBLEMS

1. Find an expression for o4 (n), the sum of the &th powers of the divisors
of n.

2. Prove that 1) = (X (@)~

din din

[Hint: Both sides are multiplicative functions, so it suffices to consider
the case n = p=. Cf. Problem 2, Section 1-2.]

3. Show that, if ¢(n) is odd, then » is a square or the double of a square.

4. Show that the number of representations of an integer n as a sum of
one or more consecutive positive integers is 7(n1), where 7, is the largest
odd divisor of n. [Hint: If

rs r
Rl DAt ) = D k- Dk =l + 24 1),

then either s or s 4+ 2r 4- 1 divides n1.]
*5. Show that the number of ordered pairs of integers whose nom is 7 is

7(n?).
=) _ (< 1)
Ew (Z ns>

6. Show that
if s> 1. [The series involved converge absolutely, and therefore can be
rearranged in any order.]

*7. (a) Show that the sum of the odd divisors of 7 is
~ T (~1)d.
din

[Hint: Let d; be an odd divisor of n, and find the total contribution to this
sum from all divisors of n of the form 2%dy.]
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(b) Show that if n 13 even, then
2 (—1)*d = 2¢(n/2) — o(n)
i

*8 Show that, 1f d|nand {n, r) = 1, then the number of solutions (mod )

of z = r (mod d), (zn}=1
en) _n 1
. 3-30(-3)
rHd
[Hint Take S of Theorem 6-4 to be the n/d numbers
z=r+id 1gt<n/d
1f p|d, then pjz Let the subsets consist of those elements of § divimble
by the vanous primes which divide n but not d]
6-2 The Mobius function  As we saw 1z Theorem 6-3, if f1s any

multiplicative function and F 1s 1ts sum function, so that

Fln) = E!(d),

then F 13 also multiplicative We now ask whether the converse 13
true—whether the multipheativity of # implies the multipheativity
of f To this end we attempt to express f(n) as a sum, over the
dwvisors of # of terms mvolving F(d) A that F 13 multipl
tive, 1t 1s enough to consider F(p"), and if the converse in question
18 valid we can also restrict attention to f(p*) Since

I = F(@") ~ F(p"™),

we can wnte
M = 3 A = 5 (B
16" = T wpIF () —E.u(d)F(d):

1f we define the function g in the following way

a1) =1,
alp) = -1,
() =0 forn>1

If we now require i addition that x be multiphicative, then u(n) 1s
defined for all positive mntegral n, and it 1s easily seen that
1 fn=1,
win) =10 if n1s divisible by a square larger than 1,
(-1 1n=p Py, Where the p, are dis-
tinct primes
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This function g is commonly called the Mdbsus function; it plays
an important role in the theory of numbers. On the basis of the
heuristic argument above, it is reasonable to conjecture that, for any n,

1) = E#( ) Fa)

and that from this formula one might be able to deduce the multi-
plicativity of f from that of F. 'We now substantiate these conjectures.

1 ifn=1
-5, d) =
THEOREM 6-5 %u( ) {0 dFn>1.

Proof: By Theorem 6-3, the function
M) = 313 w(d)
is multiplicative, and since
1, fa=0
M(p*) = ] ’
*%) { 14+0+--+0, ifa>l,
we see that M (n) = 0 if n is divisible by any prime, that is, if n > 1.

THEOREM 6-6 (Mdébius inversion formula). If f is any number-
theoretic function (not necessarily multiplicative) and

Fn) = g};‘f (d),
then

s =2 ran () = 27 (5)v@,
Proof: We have
Su@F (3) = £ s@F@) = £ w@) T @)
din dyda=n

dldg =n dldg

= T w@)@) = $1@)  uld),
didln din ’n

Il

Ya
and, by Theorem 6~5, the coefficient of f(d) is zero unless n/d = 1
(that is, unless d = n), when it is 1, so that this last sum is equal
to f(n).
As an example of Theorem 6-6, we have
#(d)

THEOREM 6-7. o) =n3 ——
din
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Ths follows immed:ately from Theorem 3-9

Zold=n
din

It can also be obtamned directly from the product representation of
¢(n)

. AT
q:(n)—-nlp]ln(l p)—n(l-{r-mpzz ) ny

in Pt Py an d
<pr

THEOREM 6-8 If
Fn) =T f(d)

and F 15 mulisphentive, 30 13
Proof If (m,n) = 1, then

Ty = 3 Fdy)n (%)
dofn
- :ﬁ F@)F(u (dl:) . (dlz)
= EF@ (f) Eram (dﬂz) —

PROBLEMS
*1 Show that

RS

en) =
2 Show that

‘%l‘(d) e |u(n)]

3 Letfbe any number theoretic function of two vanables Show thataf
F 15 defined by the equation

F(m n) =4)T-mf(d‘ ),

then -

Fim,m) = d)T-' H(dr(EF i’ df)
T A
s
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*4 Let Ji(n) be the number of ordered sets of % equal or distinet positive
integers, none of which exceeds n and whose acp is prime to n. Show, in
the order indicated, that

(a) § Jr(d) = 7%,
(b) Jx is multiplicative,

) Jiln) = n”1‘1<1 - }-)-
rin

pk
5. Let
Aln) = log » if nis a: power of any prime p,
0 otherwise.
Show that
logn = 2, A(d),
din

and deduce that

;Z,: p(d)logd = —A(n),

6. If ¢ is any multiplicative function, then the function ¢' defined by the
equation
1 fn=1
8(@)Y (ﬁ) - ’
%, @ d 0 ifa> 1,

is also multiplicative. In this notation, find p’ and 7’.
7. If ¢ and ¢ have the relation specified in Problem 6 and if

Fn) = X f(d)® (ﬁ) )
din d
then
f(n) = T F@9 (1‘) :
dln d

8. Show that if f is multiplicative, then
2 w(@)7@) =II(1 - 5(p)).
din ?ln

{Hint: Show that the function on the left is multiplicative.]

6~3 The function (x]. Another function which is of importance in
number theory is the function [z], introduced in the last chapter to
represent the largest integer not exceeding x. In other words, for
each real z, [z] is the unique integer such that

z—1<ppl<z<[z]4+ 1.
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For later purposes we List some of the properties of [z]

(a) = =lz] + 9 where 0 < ¢ < 1 13 called the fractional part
of z

(b) [z + n] = [z] + #, 1f n 15 an integer

© [ +[=2 = {0_1 if 18 an nteger,

otherwise

@) ] + [2a] <[22+ 23]

(e) 1z/n] = [[z]/n] of 1 15 a positive mteger

) 0<[z] —2[z/21 <1 (Equwvalently, [z] — 2[z/2] assumes
only the values 0 and 1)

(g) The number of mntegers m for which z; < m < 2318 [25] ~ [z1]

(h) The number of multiples of m which do not exceed z 15 [z/m]

(1) The least non negative residue of @, medule m, 18 the number
a’ defined by the equation

HES
a=mj—|+a
m,
These properties may easily be proved usmng the defimtion of [z} and
the first property above

Another quantity closely related to [z] 1s the nearest integer to z,
which 1s [z + 3] Sometimes the quantity —[—z] 15 also useful, 1t
15 the smallest mteger not less than z

In order to simphfy the notation summation signs will sometimes
be used with the real vanable z as upper mit  In these cases, 1t 1s
understood that the summation vanable takes values up to [z], m
other words,

: 2l
3 ) = & 1k
£oa ke
The following relation between the greatest mteger function and
the factorial function will be of importance later

THEOREM 6-8 If n 15 a postiiwe tnleger, the exponent of the haghest
power of a prime p which dundes nl 15

HEEIREIE
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That s, f we sel ;?:1 L‘?{] = E(p, n),

then pE@m||n),
Remark: Thesum has, of course, only finitely many nonzero terms,

Proof: The multiples of p from among the numbers 1, 2, ..., n
are counted once each in [n/p], those which are also multiples of p? are
counted again in [n/p?%], etc. Thus if p'||m, the total contribution to

the sum
n
HRET
P ?
from the number m is exactly r, as it should be.

PROBLEMS

1. Carry out the proofs of the properties of [z] listed in the text.

2. Prove that [2z] + [2y] > (=] + ] 4 [x + y], where = and y are
arbitrary real numbers. [Hint: Consider separately the cases that neither,
one, or both of z — [z], ¥ — [y] are greater than }.]

3. Let f(z, n) be the number of integers less than or equal to 2 and prime
to n. Show that

(a) Z):f (3 ) g) = [z]. [Parallel the proof of Theorem 3-9.]
din

©) 16e,m) = £ (@) [3] .

4. Let x be a number between 0 and 1. Let a; be the smallest positive
integer such that

:v1=a:--120,
ay

let a, be the smallest positive integer such that

1
Te=1x——2=0,
az

ete. Show that this leads to a finite expansion

x=l+_1_'.+...+;1_

ay as n

(that is, that z,.; = 0 for some =) if and only if z is rational.
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5 () Show that
(ab)1
al(d)*

18 2n integer f @ and b are positive integers  {Hint Useinductionona]
(b) Show that
(2a)1(2b)!
atdl(a + b}

18 an integer  [Hint Use Problem 2]

6-4 The symbols 0", *o”, and “‘~*. If we construct tables
of values of the common number-theoretic functions, we are
mmmediately struck by how erratically they behave Thus r(n) can
be atbitranly large, mmce for example r(2") = m + 1, and yet
7(n) = 2 whenevernispnme Neithery nor ¢ vanes quite so wildly,
1 the sense that each of them definitely grows with n, but they are
still far from monotonie It 13 one of the objects of this chapter to
see what can be sud about the size of these and other functional
values sumply m terms of the mze of thewr arguments,

A very convement notation has been mtroduced by Landau for use
1n this connection  Let g(x) be defined and positive for all positive 2
Then if f(z) 1s any function defined on some unhounded set S of
positive numbers (whick 1n gll applications kere will be ether the
set of positive integers or the set of positive real numbers), and of
there 15 a number M such that

Ll

9(z)

for all sufficiently large z € S, then we wrnte f(z) = 0{g(x)) (The
symbol € means “is an element of ") If

T 12

2 =0,

h-q(z)

<M

we write f(z) = 0(g(z)), and of
@,

z—~-v(z)

»
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3 ?

we write f(z) ~ g(z), and say that f(z) is asymptotically equal to
g(z). For example,

sinz = O(z),

sinz = o(x),

sinz = 0(1),
p(n) = O(n),
‘\/:E = 0((13),

z* = 0(e%) for every constant %,
logz = o(x®)  for every pair of constants « > 0 and %,
[z} ~ x.

Here each of the second and third equations gives more information
than the one preceding it; the first says that sin z does not grow any
faster than z itself, the second that it does not grow as fast, and the
third that sin z remains bounded as = increases. In the fourth equa-
tion, O(n) could not be replaced by o(n), since p(p) = p — 1 ~p.

The purpose of introducing these symbols is that, by their use, a
complicated expression can be replaced by its prinecipal or largest
term, plus a remainder or error term whose possible size is indicated.
Retaining an estimate for the error term is necessary because if several
such expressions are combined, one has eventually to show that the
sum of the error terms is still of smaller order of magnitude than the
principal term. This in turn makes it necessary to combine terms
involving “0’ and “0”’. The following abbreviated rules apply:

@) 0(0(g())) = 0(g(x)),

(b) 0{o(g())) = 0(0(g(x))) = 0(o(g(x))) = o(g(x)),

() 0{g(@)) = 0(g(x)) = 0(g(x)) % o(g(@)) = O(g(x)),

@) o(glx)) % o(g()) = o(g(=)),

€ {0(g())}* = 0(¢*@)),

) 0(g()) - o(g(2)) = {o(g(=))}? = o(g*()).
The meaning of the first statement, for example, is that if f(z) =
0(g(z)) and h(z) = O(f(z)), then h(z) = O(g(z)); this follows from
the fact that, if 0 < f(x) < Myg(z) and |h(z)] < Maf(x), then
|h(z)] < M1Mag(z). The other assertions are equally straightforward;

th.ey need not be remembered explicitly, but are listed here to help
orient the student, who should analyze all of them. Notice that suit-



094 NUMBER-THEORETIC FUNCTIONS [crar 6

able combmations of these rules give more general ones, for example,
rules (a) and (c) show that
0(f()) = 0(g(z)) = O(max (f(z), 9(z)))
A useful fact to remember 1s that the implieation
f@) =0(@) mphes  h(f(z)) = Ohlo(2)))
does not hold m general, a sufficient condition 1s that h(kr) =
O(h(x)) for every positive constant &, if h(z), f(z) = = a3z — =
Thus if f(z) 1s larger than some posittve constant for every z > 0,
then f(z) = Ofg(z)) 1mplies that log f(z) = O (log g(z)), but 1t does
not imply that
& = 00,

since, for example, log 2 = O (log \/5) but z # O(\/z_:)

‘The situation 1s quite different for the “o” symbol If f(z) =
o{g(x)), then

B = (@)

if f{z) mcreases mndefimtely with z, but the relatzon logf(z) =
oftog 9(z)) may be false, e g, if f(z) = Vz, g(z) = =

Another mmportant pomnt anses when we want to add together a
set of error terms, the number a(z) of such terms being an ncreasmg
function of z It 13 not true without restriction that

ata) ata)
Eowe) = o(Eauw)
since, for example,
z=0(), 2=20@), s

but

ul 5]

Y kz 0 ( z z)

E=t K=t
What 1s needed here, of course, 1s that the constants implied n the
symbols 0(g(z)) all be bounded abose by some number independent
of k  The corresponding principle for the “o” symbol 1s this af
fu@) = o{gu(z)), then we can write fi(r) = e(z)gp(z), where

e(z) = 0asz— , for fixed k, and f max (e ()],  , |eagey (2)1) 0
asz — o, then

a(z) a{x}
‘E‘ fulz) =0 (,, X gk(z))
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Turning now to the relation f (:z:) ~ ¢(z), notice first that it is
equivalent to the equation f(x) = g(z) + o(g(x)). Hence if
g(z) — « as z increases indefinitely, the difference f(z) — g(z) need
not remain bounded; all that is asserted is that it is of smaller order
of magnitude than g(z) itself.

To give more precise information about f(z), we must consider not
f(@) but f(z) — g(x). As an example of this, consider the following
theorem, which is not strictly & number-theoretic result, but which will
be useful in what follows:

THEOREM 6-10. There is a constant v = 0.57721 . ., (called Euler's
constant) such that

p> =logn+v+o(§;)- (1)

1
v &
Remark: The relation

1
Zi—lognf\uy, or lim(Z——-logn)=’Y, 2)

k=1 n— oo \k 1]\«

is weaker than (1), since it says nothing about the error except that
it approaches zero. Notice that (2) is not equivalent to

n

1
EE"'lOgn-i-‘Y 3)

k=1

(that is, terms may not be “transposed” in an asymptotic relation),
for (3) has no more content than the simpler relation

n

1
> ENlogn.

k=1
Proof: Put
ak=logk-—log(k—1)—%: k=23,...,
and put

kZlE—logn, n=12...,
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FIGURE 6-1

Geometrically, the number oy represents the difference between the
area of the region between the z-axia and the curve y = 1/z m the
mterval k — 1 € z < k, and the area of the rectangle inscribed m
this region, 1t 1s therefore positive The regions having areas ay, a3,
and «q are shaded n Fig 6-1 If the regions having areas oz )
are translated parallel to the z-axis into the mterval 0 <z <1, 1t
becomes obvicus that 0 < 1 — y5 < 1 and that 1 — ya41 > 1 — va,
forn=1,2 Since every bounded increasing sequence 1s con-
vergent, we have that hm (1 ~ v,) exsts, we eall the bt 1 — ¥
e

Referning agam to the square 0 < z < 1,0 € y < 1, we see that the
region whose area 1s

~,n—~,=u—v>—(1—m=l‘>§“ak

18 contained 1n the rectangle 0 <z < 1,0 < y < 1/n, of area 1/,

50 that
@
T—m=0(-
7,

If f(z) ~ g(z) and g(z) — = as T — o, then log f(z) ~ log g(z)
The relation ¢/ ~ ¢#*) 15 usually false, however, 1t 1s true only
when f(z) — g(z) = 0(1) Finally, under the above supposttions,

‘The proof 18 complete
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together with that of the continuity of f and g, one may deduce that

l )t ~ f o

for sufficiently large fixed a, by applying L'Hopital’s rule, but the
corresponding relation f'(z) ~ ¢’ (z) is not always valid.

PROBLEMS

1. Carry out the proofs of all the unproved statements in this section.
2. Show that

- 1
> [—"f—] —r ¥ Lt o0w,
13=11 0P Pip; Sz DiPs

1545 (3]

where p; is the 7th prime.
3. Show that if f(z) tends to zero monotonically as z increases without
limit, and is continuous for z > 0, and if the series

k‘él I(%)
diverges, then
2. f(k) N/ f(z)dz.
k=1 1

What can be said if the infinite series converges?
4. It is known that for every n, the nth prime p, is greater than »n log ».
Use this to show that if B, is defined by the equation

Z—l-—log]ogn=B,., n=234...,
i=1 P

then Bj, B, ... is a decreasing sequence.

6~5 The sieve of Eratosthenes. We now turn to the study of
7(z), and shall obtain many of the classical elementary results con-
cerning the distribution of primes. None of these estimates is the best
of its kind that is known, but to obtain more accurate results
would- require either too long a discussion to be worth while or the
use of tools not available here, as, for example, the theory of functions
of a complex variable. For many purposes our results are quite as
useful as the better estimates. )
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One method of estimating x(z) 18 based upon the observation that
1f n 18 less than or equal to z and 1s not divisible by any prime less
than or equal to \/a_:, then 1t 15 prime  Thus if we elminate from
the 1ntegers between 1 and z first all multiples of 2, then all
multiples of 3, then all multiples of 5, etc, until all multiples of all
primes less than or equal to v/Z have been ehmnated then the
numbers remamipg are pnme  This method of elimimnating the com-
posite numbers 13 known as the ;e of Eratosthenes, 1t has been
adapted by Viggo Brun and others mto a powerful method of esti-
mating the number of integers in a certam mnterval having specified
divisibility properies with respett 10 a rerfain set of primes.

We can modify the process just described by stnlung out the
multiples of the first » primes pr, » Pr, retaining r as an mde-
pendent variable until the best choice for 1t can be clearly seen Ii p,
13 not the largest prime less than or equal to +/z, but 13 some smaller
prime, then of course 1t 1s no longer the case that all the ntegers
remainmng are primes, but certarnly none of the primes except g1,
P, have been removed Thus if 4 (z, r) 13 the number of mntegers re-
maining after all multiples of p1,  , pr (inchudingpy, , py them-
selves, of course} have been removed from the integers less than or
equal to z, then

@) <r+ AT

In order to estumate A{z, r) we use Theorem 6-4 If we take the
N = [z] objecta to be the positive integers < z and take S, for
1 £k <, to be the set of elements of S divisible by pi then

R I

and so

B I e
&0 = [l E\[ . +1SE/9 iy, ns-};«s' PiP;Px.

e[
D1Pz Dr.
‘The difference between this expression and

z z
-z . 1y —=
1SISr Ps 15a<iSr P By +D P1p2 o
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does not exceed

(el er()-r

and consequently

1r(a:)5r+a:ﬁ(1—~—-1—>+2'.

i=1 bi
We need an estimate for the product occurring here.

THEOREM 6-11. If z > 2, then

1 1

II (1 - —) <=

p<z p/ logz
Proof: We have

1.1

II =H(1+-+—+"->:
p<zl — 1/ 14 p<z 'y p2
and, by the Unique Factorization Theorem, this is the sum of the
reciprocals of all integers having only the primes not exceeding x as

prime divisors. In particular, all integers less than or equal to z are
of this form, and so

1 z 1 241 g,
- —_ 1 ,
Ezl—l/p>k§1k>f1 w 78T

and the theorem follows.
We can now prove

THEOREM 6-12.

(@) =0 (log ;Cog x) '

Proof: As above,
#(x) Sr+2'+x-H<l —l) 52'+1+xﬂ<1——1—>,
i=1 i i=1 P:
and by Theorem 6-11,
z

w(z) < 21 4 .
log p-
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But p, > r, and so

z 1
x(z) < Togr +2
Taking r = [log ], thts becomes

42 ooer o + 0@*?)

) < log 1og z

_z
loglogz

The last term 15 O(z'™) for some ¢ > 0, and this1s 0 (L
log log z,
Hence

z z z
@) =0 (Iog log :c) +e (Iog log :c) =0 (log log x) .

*PROBLEM

Show by a sieve argument that the number of square-free integers not
exceeding z 18 less than

:H( -;l,)+0(:)

66 Sums involving primes. Theorems 6-11 and 6-12 bear a
rather peculiar relation to each other Theorem 6-11 was used n the
proof of Theorem 6-12, yet the import of Theorem 6-11 1s that the
primes are not too infrequent, while that of Theorem 6-12 1s that they
are not too frequent  For if, for example, the primes were so scarce
that p, > en? for some positive number ¢, and for all n, the product

1
n(-;)
?<z 2,
would be bounded away from zero as z — «, which 1t 1s not It
follows from Theorem 6-12, however, that there 1s no constant ¢’
such that p, < ¢’nforalln The following theorem 1s, i 1ts mphca-
tions, analogous to Theorem 6-11
TeEoREM 6-13  The sertes 3 1—1) duwerges
»
Proof By Theorem 6-11,

1 1
! (1 —=}=T1 (1 - _) — logl
8 ’ISIs 2, pgs 8 2 <~ logloga
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But since the curve ¥ = log (1 4+ z) lies entirely above the curve
y = 2z in the interval —% < z < 0 (see Fig. 6-2), and since p > 2,
we have

1 ¥
—g<log<l——> .
P p y=2z

for all primes p, and so 7 = log(14 2)

x

.

2
- > loglog x. t
1125:: p £ o8 -1 +1
In order to get more precise
information about the behavior
of the sum

3 _1_, F1Gure 6-2
p<z P

we proceed in a rather roundabout way, making use of the connection
established in Theorem 6-9 between n! and the primes not exceeding 7.

TEEOREM 6-14. Z 0EP log z.
p<z P

Proof: By Theorem 6-9,

nl =TI p(n/pl+[n/p"'l+---’
p<n
and so

ount= 2 [FJeer+ 2 (5] [ )

Now

n n
Z[—]lo p< X -lo

» g 5 g P,

p<n
and

> [ ]logp> > (——l>logp— = 7—1101;10— 2 logp
¥y Y4 P p<n

p_<_11 p<n p<n

> Elogp—logn > 1.

p<n P pSn
Moreover,

0< L] [ﬁ:l ) (ﬁ n )
P%n ([pz + p3 + logp = p%n p2 + P3 + log p-
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F1Gure 6-3

‘Thus
lognt = £ Zlogp + O(r(n) logn)
p<al N
+0 n): (L,+1+ )h)gp)

=nE bﬁ+0(x(ﬂ)logn) +0(n2p - 1)>-
and by Theorem 6-12, and the fact that the series
logk
; k(k—1)

converges, this grves

logp (nlogn
1= 0Er
log n ",2 +0 Jog log .

_ log p (nlogn)
=t x5 O gtogn

On the other hand, by comparing the area under the curve y = logz
with the total area of the mnscribed rectangles (see Fig 6-3), we see
easily that

» n
logn! = Zlogm:f logtdt + O(logn) = nlogn + O(n)
m=1 fl

+0(n)

Combming the two estimates obtained for log n!, we have

1
ny °’”’+o(”“’”) = nlogn + O(),
Z. ioglog 7



6-6] SUMS INVOLVING PRIMES 103
so that

logp ( logn )
,En D = logn +0 log log n

This proves the theorem when zis an integern. Butifn <z <n+1,

then
log p log p < logn )
— = —= =logn+4 0
p%z Y4 p<n P & + Iog IOg n
log = >
=1 o{————)- 4
0g -+ (loglogx )
THEOREM 6-15. Suppose that A1, As, - . . 75 @ nondecreasing sequence
with limitl infinity, that ¢y, cs, . . . 18 an arbitrary sequence of real or
complex numbers, and that f(x) has a continuous derivalive for x 2 A1.
Put
C((E) = Z Cn,y
MLz

where the summation 1s over all n for which N, < z. Thenfor z > X,
XZ< enf(n) = C)f(z) — K l C@)f @) dt.

Proof: We have
Z_cafn) = COI0) + (CO2) = CONNO2) + -+
- + (C()\v) - Co\v—-l))fO‘v):

where ), is the greatest A, which does not exceed x. -Regrouping the
terms, we have

XZQ enf(n) = CO) (T —F2)) + -+

+ C()\v——l) (fO‘v—l) - f()‘v))
+ OGN — @) + CO (@)

= _/:C(t)f’(t) dt + C(2)f (),

since C(t) is a step function, constant over each of the intervals
(Ai—1, Ni) and over the interval (A, z).

THEOREM 6-16. > 1 ~ log log x.
p<zP
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Proof. Take A, = Pa, €n =108 Pa/Pa, S€) = 1/logt 1n Theo-
rem 6-15 By (4),

T 1 logp 1
E:P_2+Z<§Sz( log 7,
_ 1 Iogp_/( logp) -—dl +l
a Elz<p<x tlog?t * 2
__1 log x )}
gz {l°“ +o (log log
= log¢ } dt 1
+./ {Io&t+0(loglogl) tlog’t+§
M 1
= -} dt
o+ 3 Hogt+_/ O(tlogtloglogl) t

=loglogz+0(1)+f O(
3

Now for some constant M,

f‘o(;)d cnf g
3 tlog tloglog 2 tlogtloglogt

= O(log log log ),

—1) @
tlog tlog log ¢,

1
so that ¥ - =loglogz 4+ Oflog log log 2),
2<zP
which proves the theorem
*PROBLEM
Use Theorems 6-15 and 6-16 to show that
T
/ Wy v L oay~iogioes,
2 02 #SzP

and deduce that for no positive constant §13therea T = T'{(3) such that for
allt> T,

W>a+H—,
fogt
and that for no 8 > 015 there s T = T'6) such that for all £ > T,

LIOR! —s)m
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This implies that, if
T(z)

z—w 2/log 2

exists, it must be 1.
6-7 The order of w(x). We now show that the actual order of
x(z) is z/log .
TreoreM 6-17. There are posilive fintte constants ¢; and co such
that for z > 2,

clfé_g—— < w(z) <c21 g:v

Proof: Take n > 2. Corresponding to each p < 2n there is a
unique integer 7, such that ™ < 2n < p™*1. We first prove that

1 1
(2n)! and (2n)!
nin! ninl

P (6)

p<2n

n<p<2n

The first part is obvious, sinee any prime between n and 2n occurs as
a factor of (2n)! but does not occur in the denominator (n!)2. For
the second part, we have that the highest power of p which divides
the numerator (2n)!, by Theorem 6-9, has exponent

 [2n
i
m=1 LD

while the highest power of p which divides the denominator has
exponent,
m=1LP

2n
so that the highest power of p dividing ( ) has exponent

rp 2 Tp
(2] -o[2] = 2
m=1 {LD D m=1
Here we have used property (f) of [z], from the list in Section 6-3.
From (5) we get

wenw < T p< ()< I g e,

n<p<2n n p<2n
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20
whence (x(21) — »{n)) logn < log( ) < x(2n) log 2n

Clearly (n) < 2%, and also

2n)= @D @) frta, fo g

1eeom a=1 G amt
thus (x(2n) — #{n)) logn < 2nlog 2,
or* @) — w(n) e !-;'g'—n. ®)
and x(2n) log 2n > nlog 2,
n
or w(2n) > C‘m ()

If z > 4, we get from (7) that

E) z/2] z
> = o S -
@2 (2 [2]) 7 4 ioglez” “logs’
and since 7(z) 2 1for2 < 7 < 4, 7(z) > ¢ (/log z) for z > 2
Ty > 4, we get from (6) that

w0 =)= = () 51+ -~ ()

y/2 ¥

St lg i/l < “logy’

N _ ¥

andsofory >2, =) 7(2) <0’logy
Using the trivial bound = (/2) < y/2, we get

vr(y)logy—w( )Iog- = [w(y) —w( )}logy+1r( )log2

<logy 01——+ < egy

*Here s, &4,  will denote certamn posittve eonstants, whose exact values
will be of no concern
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If we put y = /2™ with 2" < /2 and m > 0, this becomes
x T z z T
\5m logé—,; -7 57'1—-1-_1 log*z—m—_ﬁ' < 035;;:
and summing over all such m’s, we have
z z )
(@) logz — 7 (W) logéﬂ—;1 < €7,

where 2* < z/2 < 2¢t1, But 2/2°7! < 2, so that =(z/2*t?) =0,
and we have
m(z) log z < cox,

which completes the proof.

THEOREM 6-18. There are postltve constants cg, €10 Such that for

r>1,
cor logr < p, < ¢yorlog 7.

Proof: Taking z to be p, in Theorem 6-17, we get

[ Pr <r<e; .
log p, log p,

The right-hand inequality gives immediately
Pr > cor log pr > cor log .

Using the other inequality and the fact that log u = o(V/" 1:), we have
that for r > ¢;,

. 1
log p <o < TlogPr

1
Vp, P
pr <%,

log p, < 2logr,

and so for r > ¢y,

1

pr < -—r-2logr,
€1

whence finally p, < ¢;or logr for all » > 1.

We'can use Theorem 6-17 to improve Theorems 6-14 and 6-16.
Examining the proof of Theorem 6-14, we see that the error term can
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now be reduced to O(n), smce by Theorem 6-17, x(n) logn = O(n)
Thus we have

I
Taeorsu 6-19 T L = logz + O(1)
<z P
Following the argument used for Theorem 6-14, we now have

1 = dt
Pl P (log z + O(1)) +/ logt TiogT

z
fXey 4
logp ) di
—= —logt
L = Yt

—1+0( )+loglogz—loglog2

logp ) de “oydt
+/z’ (Z log ¢ tlog2t J. tloghi
Here the first integral 18 convergent, and the second 13 clearly
O(1/logz) This proves
THEOREM 6-20  There 13 a constant C such that

ZS: = sloglog:+c+0 1ng)

15234

PROBLEM

Apply Theorem 6-20 to show that for some constant B,

Py lng( —-—) = —loglogz— B+ 0 __)
PS» log ,

Deduce that
1y _ e 1
~-2)y=2_40 .
»I;I: (1 P) logz * (log’ z)

By Theorem 6-11 B > 0, although we do not prove it, B 15 Euler’s con-
stant  {Use the law of the mean to show that if f(z) >0 ss z— s, then
9 = 1+ 0(@) ]

6-8 Bertrand’s conjecture. In 1845 J Bertrand showed empin-
cally that there 1s a pnme between » and 2n for all n greater than 1
and less than six million, and predicted that this 1s true for all positive
mtegral . Chebyshev proved thisin 1850, and indeed that for every



6-8] BERTRAND’S CONJECTURE 109

¢ > + there is a £ such that for every = > £ there is a prime between
z and (1 + €)z. Since that time, analytic methods have been used
to show that this last theorem is true for every ¢ > 0. We shall con-
tent ourselves here with a proof of Bertrand’s original conjecture.
The proof given is due to P. Erdos.

Tt is worth noting that Theorem 6-19 implies a weak form of the
theorem.

THEOREM 6-21. There exisis a posilive constant ¢y such that there
1s a prime befween n and ¢yon for all n.
Proof: By Theorem 6-19, there is a constant 4 such that
1
logn — 4 < 3 2EP <logn+ 4
p<n P
for all n. Suppose that there is no prime between n and ne?4. Then

lo lo
s lep_ o logp

pS<n P p<nad P
and so by Theorem 6-19 again,
I
5 B2 log (ne?t) — A = logn + A.

pS<n
With this contradiction, the theorem is proved with ¢;5 = e?.
For the proof of the more exact theorem we need two lemmas.
THEOREM 6-22, I » <4~

p<n

Proof: We use induction on n. The theorem is obvious if n = 1
or2, Supposeitistruefor1,2,...,n — 1, wheren > 3. Then we
can restrict attention to odd n, since otherwise

IHHp= 1II p<4 <4

pSn p<n—1

80 we can put m = 2m 4- 1. From its definition, the binomial
coefficient

(2m + 1) _ (2m + 1)1
m T ml(m 4+ D!

is divisible by every prime p withm + 2 < p < 2m + 1. Hence
m

-pS<2m41 m pSm+1
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But the numbers
(2m + l) and (2m + l)
m m-1
are equal, and hoth occur mm the expansion of (1 -+ 1)**¥%, 50 that
2m +1 <1 22mHl o gm
m -2 ’

and 50 I p<ar 4mtt = gt
PE2m4L

The theorem follows by mduction on n
Tarorew 623 Ifn 2 3anddn < p < n, then p+(2ﬂ")

Proof The restrictions on n and p are such that

(s} p1sgreater than 2,

(b) p and 2p are the only multiples of p which are less than or
equal to 2 since 3p 1s greater than 2n,

(¢) patself 1s the only multiple of p which 1s less than or equal ton

From () and (b), p*|(2n), and from (e), p?l|(nl)?, so that
pH2n)Y/ (u)?

TreorEM 6-24  For any posituve snleger n there 13 a prime p such

thatn <p<2n

Proof Thisistrueforn =1,2,3 Assume the theorem false fora
certan mteger n > 4 Then by Theorem 6-23, every prime which

divides (2:) must be less than or equal to 2n/3 Let p be such s
prime, and suppose that p?|| (2:

6-17, since
( )
n

1t follows that p* < 22 Thusif @ > 2 then p < V/2n, and so there
are at most [v/2n] primes appearing in the pnme power factorization

2
of (:) with exponent larger than 1 Hence

(seo= 1,

P<2n/a

Then by the proof of Theorem

IL 7, (" S2n <poth)

PE2n
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But (2n> is the largest of the 2n 4 1 terms in the expansion of
n
‘(1 + 1)%", 5o that

4" < (2n+1) (2:>:

and so
L e I
2n 41 p<2n/3 P
By Theorem 6-22, this implies that
47 < (2n)\/1’rn . 42"/3
2n 41 ?

and since 2n + 1 < 4n?, this gives
£ < @)V B o 4B < ()Y

Taking logarithms, we have

< (\/2_n + 2) log 2n.

nlog 4
3

This inequality is false for n > 512, so the theorem is true for
n > 512. But in the sequence of primes

2,3, 5,7, 13, 23, 43, 83, 163, 317, 557,

each number is smaller than twice the one preceding it, and the
theorem is also true for all n < 512. It is therefore true for all n.

PROBLEMS

1. 1t follows from the Problem of Section 6-6 that in Theorem 6-17,
c1 <1< ¢y If estimates had been made of ¢1 and c¢2 in the proof of
Theorem 6~17 (which would be simple to do), we would know, as a con-
sequence, two particular constants ¢; and ¢z for which the inequality of

Theorem 6~13 holds. Suppose that this is the case, and that co/c; = 8> 1.
Show that if ¢ > 0, then

(1 + 2) ~ 7(2)
z/log z

NERY
>l 4+e—B)+ log 7

Deduce that if € > 8 ~ 1, the number of primes between z and (1 + €)=z
tends to infinity with z.



112 NUMBER-THEORETIC FUNCTIONS [czar 6
2 Show that there 15 a constant 4 > 0 such that

1 >4
<3<t P
for all sufficiently large = Deduce that for each ¢ > O there are mfimtely
many paws pa and pasr of consecutive primes such that

a1 < (L +€)pa

6~9 The order of magnitude of ¢, s, and 7. The quantity =(z) 18
reasonably well-behaved, and so one can make fairly precise state-
ments about 1ts size as a function of z  This 1s not true of the other
functions we bave conmdered, which vary much too wildly to permit
asymptotic approximations There are, however, vanous weaker
statements which can be made about their size which still yield con-
siderable information

Consider, for example, the quantity r(n) A moment's thought
shows that the number of divisors of # 13 much smaller than n itself,
forlarge n, 1t 1sto be expected that 7(n) = o(n) Andwhiler(n) =2
mfintely many tumes 1t 1s also possible to make 7(n) arbitranly large
for swtablen Thus:f the pomnts (n, r(n)) are plotted i a coordinate
system, as in Fig 64, there 19 a unique “lowest” polygonal path
extending upward and to the right from (1, 1) which 1s concave down-
ward and 15 such that every pomnt (n, r(n)) Les on or below 1t
Suppose that this path 1s desenibed by the equation y = T(z)
While we shall not obtain an asymptotic estimate for 7'(z), the
following theorem shows that 1t mncreases more rapidly than any
power of log 2, and less rapidly than any positive power of z

T -

1 234567 8 91011121314 1516 17 18 10 20 21 22 23 24
Fiavre 64
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TrEOREM 6-25.  (a) The relation 7(n) = O (log*n) s false
for every constant h.
(b) The relation +(n) = O(n®) is true for every fixed § > 0.

Proof: (a) Let » be any of the numbers (2:3--:-p.)7
m =1, 2, ...; here r is arbitrary but fixed. Then

Tm=§m+n=m+w>m

logn
= hat
But m Tog (2.3”.2)'),501; a
T
r(n) > log’ n > ¢13 log™ n,

(log (2-3---p,))"

where ¢;3 > 0 is a constant depending only on 7, and not on n.

(b) Let f()—’—"—t2

then f is multiplicative. But
my T + 1 2 logp™ 2  logp™
J@™) = T IS m6 1 ms = Joz 2 Y]
? Ogp P 0g p
so that f(p™) — 0 as p™ — =, i.e., as either p or m, or both, increases.

This clearly implies that f(n) — 0 as n — o, which is the assertion.
Alternative proof of (b): Let & be positive, and let

,
n = II p.
1

Then Tﬁ::)=a1+1...“"+1 Hmax( +1>

pla,s prars — piin 220 piﬁz

For fixed 8, the quantity

z+1

(12

max
z20 D

isequal to 1 for sufficiently large p, and is never smaller than 1, Hence

3 = G
n p ::> 0

and ¢; is a finite constant mdependent of n. Hence r(n) = 0(n?).
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By actually evaluating the constant ¢;, one obtamns inequalities

such as _

r(r) < V3, 7(n) < 4vV/n, N

which of course are very poor estimates for large n, but which are

sometimes more useful than the statement of Theorem 6-25, where

nothing 1s said about the behavior of r (r) for all n, but only forlargen
As regards the g-function, we have the trivial upper bound

o(n) < n — Lforn > 1, equality bemng attained whenever n 18 prime

‘The corresponding low er bound 1 less obvious

There ts @ postbive conslant cry suck that for all

Tuaeoren 6-26
n>3,
cun
oln) > loglogn
Proof We have
eln) —afi- _)
n sin
so that
- ge(i-) s -0)+5)
lo— log{l~=)=~— log{1—~ =
4 E.:. z » E‘ T Z 4 3
>y —
%p s,
smce
L 1--
2a(t-)+3)>36-55)
1 b
> -~ ) D
LG5
Nowlet p1, , pr—, be the primes less than log n which divide n
50 that
1 pg 1 1
L — =8 + &
:0 g Px le-r—;ﬂ Pr L+ S
Then

log?n < pr_piy < H m<n,
~p+1
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pat logn
so tha p"loglogn,
1 logn
and Sz < g C1g.

~ logn ’ loglogn
By Theorem 6-20,
81 < loglog pr—p + ¢17 < logloglog n + ¢;3.
Combining these results, we get
logsa———i?-2 > —logloglogn — ¢,
and so

e(n) s |
n loglog n

We can use Theorem 6-26 to obtain a corresponding upper bound
for ¢(n), with the help of the following theorem.

THEOREM 6-27. There 1s a positive consiant csq such that

Proof: If n = I1p?, then
a+l
wwm=n@;;%mnl—%

pln pin ¥4

D ————— on
pin 1 - l/p
=n2]] 1 - p—'(tx+1)).

pin

Here the coefficient of n? is clearly less than 1 and greater than or

equal to
1 " 1
HQWQ> Q_ﬁ.
Pin P2 kl;[i’ k?

id 1 i 1
gl (1LY = ( L
o8 E=2 (1 k2> lEz log{} kz) ’

Now
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and forz > 0, Iog(l—-z)>1—_—y

L 1
1—=
50 that -z 2k,_1 < E log( k,)

Smnce the first sum 1n this inequality tends to a hmt as n— o, 1t
follows that the above coefficient of #? 13 bounded away from zero,
and the theorem follows
THEOREM 6-28 a(n) = O(nloglogn)
Proof By Theorem 6-26,
e(n) > TS
n loglogn

and by Theorem 6-27,
a(n) n log logn
)
n ¢(ﬂ) C14
’—S‘—) = 0 (loglogn),

o{n) = O(nloglog n)

PROBLEM

Show that there is an infimte sequence of positave integers ny, 72, uch
that

e

om) <i———
log log ™

k=12
for some constant ¢

6-10 Average order of magmitude. Another way of descnibing the
bebavior of a number-theoretic function 15 1n terms of its average
order, that 18, 1n terms of the quantity

1 -
tE s
Summng the values of a function has the effect of smoothing out its

s0 that 1t 18 possible to make quite precise
statements about the sze of the sum
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TreoreEM 6-29. If

P@) = £1)
then
n n n
mz=1 F(nl) - mz=l [;’-7:] f(”L).
Proof:
n n n [n/d] Iy
T Fm) = T Zi@ =1 3@ =X [2]sa.
m=1 m=1dim de=l k=1

TrEOREM 6~30. If
F(n) = %f (d),

then
£ ro = = [2]im + £ ¢(2) <[] e,

m=1 mes=]

where t is any posilive integer not exceeding n, and

3
G =G([E)) = Z J(m).

Proof: By the definition of @, f(m) = G(m) — G(m — 1), and so0
by partial summation (cf. the proof of Theorem 6-15),

Zrm= 5 [2im+ 2 [ Z]sm

n
mel L] met4l

fi
[v]..

z [Zim+ £ [2] @ - 6 - )
- 2o+ £ oo (3] - [75))
- [7-;] G ().

As was noted earlier, [n/m] — [n/(m + 1)] is the number of integers
% such that

iLm

it

~
[

g
i

n
<u—-
m-+ 1 - m
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For each such 4, nfu — 1 < m < n/y, so that m = [n/u] Hence

6(m) ([;n’i] - [m'-;- l]) = n/<m+1:£2usn/nc (3) ’
o (Z-ED E B 6)
/1 '
£e()

THEOREM 6-31 Zl‘!(m) =nlogn + (2y — 1)n + O(}),

and the proof 1s complete

where v 18 Euler’s constant

Proof Take F =1, f=1, t = [v/n] in Theorem 6-30, then
G(&) = £l and

- WA [ MVA g n
Em-E[2]+E[2]- [ﬁ] el
= 22‘2 [i] —n+0(Vn)
~2% 24 o/m —nt0(vi

—n¥ i aiowvm
mel M

= 2n (log V2 -+ v + 0Q1/Va)) — n + O(/n)

= nlogn -+ n(2y — 1) + O(Vn)
The term O(v/n) i Theorem 6-31 1s not the best possible estimate
of the error  The problem of ncreasing the accuracy of the estimate,
usually called Dirichlet’s divisor problem has received a large amount
of study It 1s known that O(n?) can be replaced by O(n}), but not
by O(n}) The exact exponent, if such exists 1s still unknown

For the purpose of 1l the methods lable for

averages, we give a second proof of Theorem 6-31 By Theorem 6-29,

o= £[7]

1 Lm,
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¥

()

Ficure 6-5

Geometrically, this last sum represents the number of lattice points
(z, y) (that is, points such that z and y are integers) with positive
coordinates, on or below the hyperbola zy = n, since for fixed
z the number of integers y such that 1 < y < n/z is exactly [n/z].

By symmetry, the number of lattice points (z, y) with0 < zy < n,
¥ > z, is equal to the number with 0 < zy < n,y < z (see Fig. 6-5).
Hence the number of points (z, y) with 0 < zy < n is twice the num-
ber of those with y > z, plus the number with y = z:

n

Vi (T _
=25+ v
WACAED 4 o)

=2nz:‘,5+0(\/77) -2

= 2n (log vV + v + 0(1/vVn)) — n+ 0(Vn)
=nlogn + 2y — )n + O(\/;).

To get an asymptotic estimate for the sum of the first » values of
the o-function, we need a preliminary result concerning the famous
Riemann {-function, which is defined for s > 1 by the equation

1
£(s) =n§l;;'

FOl_‘ s < 1 the function is, for the time being, undefined, since the
series fails to converge for such s. It is a well-known result, which we

shall use without proof (see Problem 6 below), that

= ] 7r2
0= 5 5=
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THEOREM 6-32 Fors> 1,
1 -
) ,Ex
Proof The senies of the theorem and that for {(s) converge ab-
solutely for s > 1, so that they may be multiphed together by adding
all possible products of a term from one series and a term from the
other, and the resulting terms may be arranged 1n any convement

order Hence

sls we) _ & B _ S
motm ST W el (ma) (S

s{n)

2
TrEoREM 6-33 Z e(m) = 3;”7 + O{nlogn)
ma1

Proof Since
om =m % ),
we have
n "(d) , » [
2_’(0(7") ): m Z Z du(@) = ): #(d) ):‘d
["/'fl + ["/‘fl _is
- EaB A L5 2]
+o(£[2)

i
E,,Z W F + O(E. E) + O(nlogn)

“2(M2- 2 M) ot
gl &

ol
-M

_"__ZL 25 L
=7 r(2)+0(ﬂ, Z 2)+0(n,logn)
% O(n) + O(nlogn)

';,' + O{nlogn)
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x2n?
TEEOREM 6-34. Z o(m) = —— + O(nlogn).
Proof :
n n -n/m 1.® n 2 n
PRUE 'L':”,%d-mazldwma([a] +[3])
= % i 3 + O(nlogn)
= ’i (@) — 0(1/n)) + O(nlogn)
{(2) 4 O(nlogn).
PROBLEMS
7(n) log z

1. Show that 3~ =2

nl=x n
rems 6-15 and 6-31.]
2. Let §(n) be the largest odd divisor of n. Show that

}(:a(n)=%2+0(x) amd YO _Z

n<z

4 2ylog z + O(1). [Hint: Use Theo-

+ o).

[Hint: Classify the numbers less than or equal to z according to the ex-
ponents of the powers of 2 dividing them, and show that

(z=1)/2 (z—2)/4 4 9 (=-4/8g 4
Tim= L Grth+ 3 nt?y nEt
n<z 2 ne( 4
*3. Show that p eln) 8z
n<z N '

Deduce that the numbers ¢ (n)/n are not uniformly distributed in the inter-
val (0,1). [A sequence {@,} of numbers in (0, 1) is said to be uniformly
distributed if, for every e and S with0 < a < < 1,

lim L Y 1=8-al
Now N n<N
aSan<B
4. Prove that i‘, o(d) [ﬁ] _nn+1)
d=1 d 2

{(Use Theorem 6-29.)
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*5 Using the result of Problem 1 Section 6-2 show that

logz 3o/ ——

ngﬁl’(") w(ﬂ)

where the accent designates summation over the square free integers
%6 Prove that {(2) = 7%/6 by evaluating the double ntegral

/ dody
o 1= 2y
m two ways (Hinl Obtawn I = {(2) from the expansion

1
o T4ay+eyyt+2% +
which s valid for [zy| < 1 Then evaluate the integral directly by rotating
the coordinate system about the orign through 45° to obtain

13 u do 2% V2 —u dv
-4 | —F _taf a &
_/; u,/;Z—u'+v’+ _/,‘,./;"]; Py

Integrating with respect to v and making the substitution « = V/2 cos |

6-11 An application  As was pointed out earlier, 1t 1s not known
whether 2 15 a primitive root of infinitely many primes, nor has the
same question been settled for any other fixed mteger It 1s there-
fore natural to ask, what can be said about the size of the smallest
primutive root gy, as a function of p? Unfortunately the hittle thatis
known (such as the theorem that g, 18 less than v/p log!? pforlarge p)
cannot be developed here, we content ourselves with an estimate
for the smallest quadratic nonresidue n, of p Since g, 15 certamly
a nonresidue of p any upper bound for g, would mply the same
bound for n,, but not conversely

THEOREM 6-35  There 13 a quadratic nonresidue of p between 1 and

/3, for all sufiiciently large primes p

Proof Corresponding to each pair of integers z, y mith (2, y) =
0<z<Vp0<y< \/p, there corresponds an integer z, umque

modulo p, such that
z = yz (mod p) 8)



6-11) AN APPLICATION 123

Different pairs z, y yield different z’s. For if
7y =y (modp) and T2 = ypz (mod p),

then
T1Yp = 2ot (mod P),

whence 71y, = zoy;. But this, together with the hypothesis that
(1, v1) = (22, ¥2) = 1, clearly implies that 2; = 25 and 11 = 2.

Now there are 2¢(m) ordered pairs «, y of relatively prime positive
integers whose largest elementism,if 1 < m < +/p, and one pair both
of whose elements are 1, so that the total number of pairs is

vy vp
14+2 Z2go(m) =2 Z=1<p(m) -1,

If this number is larger than p/2, then there are more than (p — 1)/2
different residue classes z, and since there are only (p — 1)/2 quad-
ratic residues of p, at least one z must be a nonresidue. But then it
follows from (8) that one of = and v (each of which is smaller than
\/1—3) is also a quadratic nonresidue of p. Thus the proof will be com-
plete when it is shown that, for all large p,

vp
2z¢<m>—1>§- )
m=1

Using the estimate of Theorem 6-33, we have that

% 6
2% ¢lm) ~1 == [VoP +0(Vplogp)

m=1
6 6
==+ 0(Vplogp) ~-—7f§-

Since 6/7% > %, it is clear that (9) holds for sufficiently large p, where
the lower bound of validity depends upon the implied constant in the
term O(Vp log p).

By refining the argument slightly, it can be shown that the error
term in Theorem 6-33 is numerically less than 1 - n log n. Using this,
the phrase “sufficiently large p” of Theorem 6-35 can be replaced by
“p > 10, and finally, by reference to tables of the smallest primitive
roots of primes less than 10, it can be shown that ny, < +/p for every
p#23,7 23
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CHAPTER 7

SUMS OF SQUARES

7-1 An approximation theorem. In this chapter we consider the
following questions: Given k, what integers can be represented as a
sum of k squares? If an integer is so representable, how many repre-
sentations are there? Both problems will be completely solved for
k = 2, a partial answer to the first will be given for k = 3, and it will
be shown that every integer is a sum of four squares (and hence of
k squares, if k > 4).

We shall need the following approximation theorem.

TreorEM 7-1. If £ is a real number and ¢ s a posilive inleger, there
are tnlegers x and y such that

x 1
- L= I1<y<t
y| ~yt+1)

Proof: The ¢ 4+ 1 numbers
0-¢—1[0-¢, 1-&£-—1(1-8, ..., [

all lie in the interval 0 < u < 1. Call them, in increasing order of
magnitude, ag, oy, . . ., ;. Mark the numbers «ay, . ..., a; on a circle
of unit circumference, that is, a unit interval on which 0 and 1 are
identified. Then the ¢ -+ 1 differences

o] — o, Qg — oy, « 0oy oy — 1, ao—a¢+1

are the lengths of the arcs of the circle between successive o's, and so
they are non-negative and

(&1 =0+ (@e—ay) ++++ (1 —e) =1.

It follows that at least one of these ¢ -+ 1 differences does not exceed
(¢t + 1)"1. But each difference is of the form

g1 — g2t — N,

where IV is an integer, and we can take y = |g; — go|, z = L£N.
125
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7-2 Sums of two squares A representat:on of the positive integer
n 85 & sum of two squares, say n = z* + y*, mll be termed proper or
smproper according s {z,y) =1 or (z, y) > 1 Throughout this
section * wall mean “9 ble as a sum of two
squares,” with an analogous meaning for “propetly representable *

TreoreM 7-2  If p = 3 (mod 4) end pln, then n has no proper
represeniation

Proof 1 pln, n =2%+ 4% and (z,3) = 1, then pjz and ply
Hence there 13 an integer u such that y = ux (mod p), and
2?4y = 2% + v¥2® = 22(1 + u?) = 0 (mod p),
80 that
u? = 1 (mod p)
Tt follows that —1 18 a quadratic residue of p, and so exther p = 2 or
p = 1 (mod 4), by Theorem 5-3

THEOREM 7-3  An anteger n = Iip,* 1 representable +f and only
1f o, 18 even for every ¢ for whtch p, = 3 (mod 4}

Proof Suppose first that p**1]|n, where p = 3 (mod 4), and sup-
pose that n = z% + y?, where (z,y) = d and p’||d Then z = dr;
and y =dyy, where (z; 1) =1 But of 2,2 +3® =N, then
PPN and 2k — 27 + 1 > 0, this contradicts Theorem 7-2

It remains only to show that f n = nn,?, where n; 18 square-free
and without divisors congruent to 3 (mod 4), then n 1s representable
Tt suffices to prove ny representable Since

@+ 9@+ u?) = @me + nuve) + (@ve — ), (1)
the product of representable numbers 1s representable, this, together
with the fact that 1 = 12 4 0% 15 representable, shows that we need
only consmder the various prime factors of n; Since 2 = [* + %15
representable, 1t suffices to show that if p =1 (mod 4), then p1s
representable  For Jater purposes, however, we prove a more precise
result

THEOREM 7-4 If n > 1 and 4* = —1 (mod n), there are unique

wtegers  and y such that

n=zl4yl, >0, ¥>0, (=1,
y = uz (raod n)
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Remark: In case n is a prime p = 1 (mod 4), the congruence
1?2 = —1 (mod p) is solvable, and so p is representable,

Proof: The idea of the proof is to replace the equation z® + y°> = n
by the equivalent conditions

224+ 94> =0(modn), 0<a®+y®<2n
To satisfy these conditions, we require that = be one of the numbers
1,2,..., [v/n], and then seek a y such that y = uz (mod n) (so that
22+ y?=0 (modn)) and 1 <y < Vn. But if y = uz (modn),
then y = uz + an, and so we want a linear combination of » and n

to be small.
We apply Theorem 7-1, with

F=—2  t=[Va),

n

and see that there are integers ¢ and z; such that 1 < z; < [\/7-{] and
1 1
< < J
sl 4+ [Va)  @Va

u a
n &y

so that
[uxy + nal] < /.

Puty; = uzy + na. Ify; > 0,puty’ =y, 2’ = 2. Iy <0, then
—y; = —uz; (mod n), and since u? = —1 (mod n) we have

uy; = ~uzy (mod n),
u(—y1) = z; (mod n},
and we take z’ = —y;, ¥’ = z;. In either case,
vy =ur’ (modn), 22+4y?=n >0 ¢ >o0.
From the relation

n=2:% + y? = 2% + ©¥x® + 2uzina + na®
= z:2(1 + »?) + uzian + na(uz; + an),

we obtain

14+ u?
1=(-Z x1+ua>:z:1+ay1,

so that (21, ¥1) = 1, whence (2, ') = 1.
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Finally, to prove the uniqueness, suppose that besides 2/, ¥, there
18 & parr 2”7, '’ satssfyng all conditions of the theorem Then by
equation (1),
@Y E? ) = @ )+ @ — )

But

2+ oy =2 ¥ ety = 2’2" (1 4 42) =0 (mod n),
and since z’x" + 7y > 0, 1t follows that 2’2 o'y =,
2y ~ 2"y =0 Hence 2’ = k', "’ = ky', and 1t 13 clear that

TuroreM 7-5  The number Pa(n) of proper representations of n s
Jour tumes the number of solutions of the congruence u? = —1 (mod n}
Hence (by Theorems 5-1 and 5-2),
o if 4l orof some p = 3 (mod 4) diwedesn,
Py(n) = 1212 fdin,nop = 3 (mod 4) dinrdesn, and s18 the
number of dustinct odd prime dunsors of n.

Proof Thetheoremistrivialifn =1 Ifn > 1, thenzy 5 0,and
the number of representations 1s four times the number of positive
representations To each u such that 4® = ~1 (mod n), there cor-
responds exactly one proper representation with x>0, y > 0,
y=uz (modn) Conversely, if 22 +3* = n and (z,y) = 1, then
{z,n) = 1, so that the congruence y = uz {modn) has a unique
solution (mod n), and

2%+ ¢? = 21 + +?) = 0 (mod n),
which 1mphes that 4? = —1 (mod n)

CororARY A prime p = 1 {(mod 4) can be represented umquely

(up to order and sign) as & sum of two squares

Ths follows immediately from the theorem, for in this case Py(p)
18 8, 50 that p has essentially only one proper representation It
clearly has no improper representation

PROBLEM

Show that 1f 715 & posttive odd number of which —2 15 a quadratic
residue, then there are integers z and y such that 22° + ¢ = n and
@y =1
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7-3 The Gaussian integers. In order to obtain an expression for
the total number of representations of an integer as a sum of two
squares, we turn our attention momentarily to the arithmetic of the
so-called Gaussian integers: the complex numbers a +- b7, where a
and b are ordinary (or rational) integers. In this section, Greek
letters will be used exclusively to designate Gaussian integers, and
the set of all such integers will be denoted by Rl:].

It is clear that if « and 8 are in R[¢}, then so also are e & 8 and of.
If « = a + bi, then (¢ + bi)(a — bi) = a® + b? is called the norm
of @, and designated by Na. It is easily verified that NaNS = NeafS.

An integer o whose reciprocal is also an integer is called a unit;
since '

1  a—-b
a+bi Nea

1_
- =

« is g unit if and only if
(@+b)la and  (@®+ ).

Ifa £ 0and b # 0, then a® 4+ b® > max (|al, |b]); hence eithera or b
must be zero. If a = 0, then b%|b, whence b = 1. If b = 0, then
a = #1. Thus the units are ==1, 3=7?. The numbers %« and ot
are called the associates of . An integer is a unit if and only if its
norm is 1.

We say that « divides 8, and write |8, if there is an integer v such
that 8 = ay. If a|, then No|NA. A unit divides any integer; if an
integer has no divisors other than its associates and the units, it is
said to be prime. Thus 1 + < is prime, since the equation

1+1= (a4 &)+ di)

implies
N1 +1) =2 =N(a+ b)N(c + di),
which shows that either N(a + ) or N(c 4+ di) is 1, so that either
a =+ bz or ¢ + di is a unit. More generally, this argument shows that
}f Na is a rational prime, then « is a prime of R[z]. Thus, correspond-
ing to the representation p=2x?-+y* of a rational prime p=1 (mod 4),
we have the decomposition
p = (z+ @) (x—iy)

into primes of R[7]. In this case the factors are not associated: z and
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¥ ave relatively prime and numerically larger than 1, and are there-
fore distinet, so that the supposition that & relation of the form

Tty =z —1y
holds, yrelds
?=1 and =y,
whuch 18 impossible
The primes p = 3 (mod 4) do not split further 1n Rfi], that s, they
are also prime 1n the larger set  Forif

p=(a+b)ec+d),

7= (@ + V) + 3

But the only factonzations of parep pand ! p? and 1t 1s impossi-
ble that a® + % = ¢ 4- @ = p, by Theorem 7-3, hence one of the
numbers @ - b2, ¢ + dr 13 a umt

If @15 not prime, 1t can be represented as a product of primes  For
then o = gy, where N8 > 1and Ny > 1, and consequently N§ < Ne,
Ny <Ko If 8 and ¥ are primes we are through, 1f one 1s not, 1t
can be factored with the factors having still smaller norms The
process cannot rontinue indefimtely, since the norms are strietly
decreasing positive rational integers, and so we come eventually to a
prume factonization

To show the of thus f: we use the foll
analog of Theorem 1-1

THEOREM 76 If o and 8 are inlegers of Rls], and 8 5 0 then there
are wnlegers p, x such that

a=fx+p, Np < Ng
Proof Since 8 = 0, we can wnte

a_a+b_ (a+ln)(c—dz)=
Feta o4& A+ By

where A and B are rational numbers  Let z be the nearest mteger to
A, and y the nearest integer to B, so that

|4 -2 <3
B—yl <}

then
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Then

5;;— (rv+iy)|= (4 —z) 4+ (B —y)|
=(A-2+B-N<GE+DI<L

Hence if we put

Z 45y = x, a— Bz +1iy) =p,
then

Np=N(ce——xﬁ)=N,8-N<g-—x> < Np,
and x, p € R[z). The proof is complete.

Starting from Theorem 7-6, the development in Chapter 2 leading
to the Unique Factorization Theorem for rational integers can now be
paralleled, and we obtain a Unique Factorization Theorem for Ri].

TrEOREM 7-7. Every integer of R[i] can be represented as a product
of primes. This representation is unique, aside from the order of the
Jactors and the presence of a set of units whose product is 1.

It can be shown that the primes of R[] are exactly the ones we have
already found, i.e., the associates of the following numbers:

(a) 147,

(b) a = bi, where a® + b? = p = 1 (mod 4),

(c) g, where ¢ = 3 (mod 4).

PROBLEMS

1. Use the idess of this section to give a new proof of the Corollary to
Theorem 7-5.

2. Find the cep (in B[i}) of 21 4~ 49¢ and 78 + 81.

3. Show that if @« = g + b{ is prime in R[¢], then either (g, b) = 1 or
ab = 0. Use this to deduce that the only primes in R[{] are those listed
above. [Hint: If (a,b) = 1, show that Ne = 2p; ... p,, where { = 0 or
landp;=1 (mod4)fori=1,2, ...,r. Notealsothat No = Na.]

7-4 The total number of representations. Suppose that n has the
factorization
n=2% I p# II ¢
p; =1(mod 4) gi =3(mod 4)

Pllt H p'u = ’n/’

3] —
j q;7 = m.
p;j=1(mod 4) ¢; =3(mod 4)



132 EUMS OF SQUARES femar 7
TareoreM 7-8. If n > 1, then the number ry(n) of representations
of nas a sum of fwo squares 1 zero of m 13 not @ square, and 15 4r(n)
of 113 0 square
Proof The case m which m 1s not a square 1s covered by Theorem

7-3 If m1s & square, each 8;1s even, and we can put s, = 2, In

this case we shall prove the theorem by establishing, by means of the

wdentity 2% 4 3% = (z 4 w)(z — 1), a one-to-one correspondence
between the vanous representations of » on the one hand, and the
factorzations of n as a product of two conjugate Gaussian integers,
on the other We must count these factorzations Smce 1412 =
1(1 — 1), and 2 = 1(1 ~ )%, we can wnite the prime decomposition
of n 11 R[{] n the form
n = (1 = )*T((a -+ b} (@ ~ b)) TLg*,
where the subscripts 1n the produets have been omutted for clanty,
and where
>0, b>0, p=d+b?
Then every divisor of 7 1n Ri] 1s of the form
7+ = (1 - )"I1(a + b)ila — b)),
where
0Lv<y, 0Ly S2u, 0Zuc<gy [
0L L2

Not every such duvisor leads to a representation, we must also

require that the complex conjugate,

z =1y = (=0°(1 + I + B)2(a — b)2)XIgn
=& (1 — 94ll((e + b)'e(e — by,

be such that (z + )& — ) == It 15 clear that this 1s the case

and only sf g =, 44 + £ =4, 7 =r Since the powers of 2 are

periodic, with period 4, we obtain all the distinct factorizations of n

1mto conjugate factors by listing the numbers

(1 — )I((a + bir(e — Biy—)1g",

where u, £, and r are fixed, v 13 one of the integers 0,1 2 3, and ;15
oneof 0,1, ¢ Ther total numbers 4II(t + 1) = 4-(a")
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PROBLEM

n

Show that 3 ra(m) = 7 + 0(V/7).

m=1
[Hint: The sum on the left is the number of lattice points inside or on the
circle z% 4 y® = n. Associate each such point with the unit square of
which it is the lower left corner. The resulting region has a polygonal
boundary, no point of which is at distance greater than /2 from the
circle.]

7-5 Sums of three squares. The problem of the solvability of the
equation n=2?+ g%+ 22 @)

is much more difficult than the corresponding question for the sum of
either two or four squares. The result is this: (2) is solvable if and
only if n is not of the form 4f(8% 4+ 7). We prove here only the
trivial half of this theorem, that if n is of the specified form then (2)
has no integral solutions.

Since a square can have only the values 0, 1, or 4 (mod 8), the sum
of three squares is congruent to 0, 1, 2, 3, 4, 5, or 6 (mod 8), so that
no n = 7 (mod 8) is so representable. If 4|n and (2) holds, then
z, y, and z must all be even, so that n/4 must also be 2 sum of three
squares. Therefore n cannot be a power of 4 times a nonrepresentable
number.

It might be mentioned that one reason that problems concerning
three squares are more difficult than those concerning either two or
four is that there is no composition identity in this case analogous to
(1) or to that given below for four squares. Indeed, the fact that 3
and 5 are sums of three squares, while 15 is not, shows that no such
identity -is possible.

7-6 Sums of four squares

THEOREM 7-9. Every posilive integer can be represented as a sum of
four squares.
Since

@ + 2" 4 25° + 22 @ + y2? + ya® + y4®)
= (Tay1 + 2292 + T3ys + 24y4)? + (T2 — 22y + Tays — 2ays)?
+ (@13 — Tay1 + Tayz ~ T2ys)® + (@ys — Tay1 + Toys — 23Y0),
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the product of numbers 18 Since 113 also
representable, 1t suffices to prove that every prime p 19 representable
The proof, which uses the same 1dea as the proof of Theotem 74
depends on the following theorem

Tueorem 7-10  Let r, s, and m be posittve wniegers with r < 3, and

lee hs (e =1, ,s) be posutive numbers {not necessartly ntegers)

smaller than m, such that

M A>T
Then the system of r linear congruences

T ez, =0(modm), »p=1, ,n
b=

where ihe a's are tnlegers, has ¢ solution n tnlegers x,, > Xy not
ell zero such that |zf S Aafora =1, ,s

Proof Put

Yo = ):‘ﬂ,-x-, forp=1, ,r

For each o, let 2, range over the integers 0 1, 2], this gives
1 + [A) choices for = which are distinet {(mod m) since A, < m, and

there are
)

oa+nn
different s tuplesz;, ,z, Correspondingtoeachs tuplez), 7.
thereisanrtupleyy, %, and so we have found

12“*”‘"”’:1,"'”"

r tuples y, ,¥- But there are only m" mtegral r tuples which
are distinct (mod m), 50 that there must be sets 31, .’ and
n", v’ such that v,/ = y,” (modm) for p =1, r I
these r-tuples correspond to z,” z./ and 7,”, . respec-
tively, then

.
v —v' = Z. @z’ ~ 7.") = 0 (modm), o=1, r

and not all of #,"—x,” are zero, while [z, —z,”| <\, for o=1, 8



7-61 SUMS OF FOUR SQUARES 135
Proof of Theorem 7-9: If p is a prime, then the congruence
22 4+ 94>+ 1 =0 (mod p)

has a solution. For if x and y range independently over the numbers
0,1,..., (p — 1)/2 (this for odd p; the assertion is clearly correet
for p = 2), then all the numbers 22 are distinct (mod p), and the
same is true of the numbers — (1 4 ¢%). TFor if 2;® = 2;2 (mod p),
then pl(2; — ;) (@ + ;). But0 < x; + z; < p,unlessz; = z; = 0,
so p|(x; — =), z; = =x; (mod p), and so z; = z;. DBut we have
altogether

prl pHl_
gt g =p+1

numbers z? and —1 — 32, so some z* is congruent to some —1 — %
modulo p, which is the assertion.
Suppose that a® + 4% 4+ 1 = 0 (mod p). By Theorem 7-10, the
congruences
z = az + bt (mod p),
y = bz — at (mod p)
have a nontrivial solution z, ¥, 2, ¢ with

max (a], [yl, l2l, [t)) < Vo + ¢

here r = 2, s = 4, m = p, and we have chosen A, = V' }; -+ ¢, where
€ > 0 is so small that \/2—9 + ¢ < p. Nowuz,y,z and ¢ are integers,

while V/p is not; if ¢ is chosen so small that Vp + ¢ < 1 4 [V), it
follows that

max (2], lyl, o], [t) < Vp.
We have
41 = (@2 + V) + ) = — (2% + 12) (mod p),
while
0<22+y*+22+E<p+p+p+op=4p
so fthat
2? +y* + 22 + 1 = Ap,

where 4 = 1,2, 0r3. If 4 = 1, we are finished. If A = 2, then z is
congruent to y, z, or¢ (mod 2). Ifz = y (mod 2), thenz = ¢ (mod 2),
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- EY G Y
and p= ( 5 ) + ( 3 + 2 + )
where the quantities in parentheses are mtegers
In the case A = 3, we note first that p = 3 has a representation

3 =12 + 12 -+ 12, sa that we need only consider p £ 3 The square
of an mteger 1s congruent to @ or 1 (mod 3}, and the equation

PR+ =3
224y 424 ¥ =0 (mod 3),

2+ 42+ 8 #0(mod9)
By the one of the y z—is divisble by 3,
and exther all the others are, or all are not, divisble by 3 Because of
the incongruence, 3}yzt, so that y, 2, and ¢ are all congruent to
+1 (mod3) Letz' be that one of =z such that 2’ = y (mod 3), and
Iet ¢ be that one of ¢ such that ¢’ = y {(mod 3) Then

S () ()
P= ( 3 + 3 s
— A2
Sl
where the quantities i parentheses are mtegers The proof 15
complete

amples that

while
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CHAPTER 8

PELL’S EQUATION AND SOME APPLICATIONS

8-1 Introduction. The Diophantine equation z® — dy®> = N
(where N and d are integers), commonly known as Pell’s equation,
was actually never considered by Pell; it was because of a mistake
on Euler’s part that his name has been attached to it. The early
Greek and Indian mathematicians had considered special cases, but
Fermat was the first to deal systematically with it. He said that he
had shown, in the special case where N = 1 and d > 0 is not a per-
fect square, that there are infinitely many integral solutions z, y; as
usual, he did not give a proof. The first published proof was given by
Lagrange, using the theory of continued fractions. Prior to this,
Euler had shown that there are infinitely many solutions if there is one.

Before beginning a systematic investigation, it might be worth
while to indicate some of the ways in which the equation arises and
some of the reasons, therefore, for its importance. On the one hand,
knowledge of the solutions of Pell’s equation is essential in finding
integral solutions of the general quadratic equation

ax? +bxy +ef +detey+f=0,
in which a, b, ..., f are integers. For, writing the left side as a
polynomial in z,

ax? 4+ by F )z + e’ +ey+ 1 =0,
it is clear that, if the equation is solvable for a certain y, the
discriminant

(by + d)? — da(ey’® + ey + 1),
or, what is the same thing,
(b — 4ac)y® + (2bd — dae)y + d* — 4af,
must be a perfect square, say z2. Putting
b —dac=p, 2bd—4dae=gq, d®—4daf=r,

we have

W+ r—2Z=0
137
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Agamn, the diseimimant of this quadratic 1n ¢ must be a perfect
square, s2y

¢ — dplr = %) = w”.
Thus we are led to consider the Pell equation

w? — 4ps? = ¢¢ — dpr,
knowing soluttons of 1t, we can, at any rate, obtain rational solutions
of the onginal equation

As 2 second example, consider the real quadratic field R(Vd), con-

sisting of all the numbers of the form

a+bvd, d>1,dsquaredree

where a and b are rational numbers—positive, negative or zero  Each
of these numbers with b 5 0 15 & zero of & umque quadratic poly-
nomial with relatively prime integral coefficients, that of 2> bemg
posttive  If the leading coefficient of the polynomral 1s 1, the cor-
responding number 1s said to be an integer of the field (Notice the
close analogy between the present discussion and that n the first
portion of Section 7-3  There, of course, we were working with the
ntegers of the ronreal quadratic field R(v/=~1)) Starting with
this notion of mteger, 1t 1s possible to canstruct an arithmetic very
similar to that developed 1n Chapter 2 for the ordinary, or rational,
mtegers  Denote by R[V/d] the set of all integers of R(VA) If
a, 8, and o/ are 1 R[\/&I, then we say that 8 dwides , and write
Bla If oll, then 15 8 umaf of R[v/3] 1f every factonization a = fy
mnto the product of mtegers of R[\/E] 18 such that either 8 or y1s a
umt, then a1s prmen R[VA]  Finally, the norm Nooof a = a + bvd
18 the product of « and 1ts algebrac conjugate @ = a — bV/4d, namely
a® — db% Tt 13 a rational integer if « 1s an integer of the field, and
Na: NB = N(af) always

Two complications now anse, however, which must be dealt wath
The more serious, with which we shall not be concerned for the time
bemg, 1s that the analog of the Unique Factonzation Theorem does
not hold for every d, and 1t 1s necessary to introduce a rather sophis-
ticated mechanism to deal with this problem The other complica-
tion 13 that, 1n distinetion to the set of rational integers where there
are only the two umts =1, a real quadratic field has infimtely many,
axwll flaw fram, the thenramse of s chapfer  Tan whow casly wan
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that « is & unit of R(V/ Ef) if and only if Na = 4=1, that is, if and only
if a? — db? = 1.

Since it can be shown that @ + bV/d isa quadratic integer if and only
if  and b are both rational integers (or in cased = 1 (mod 4), a and b
may also be halves of odd integers), the infinitude of units follows
from Lagrange’s theorem concerning Pell’s equation. Clearly, knowl-
edge of the structure of this set of units will depend on a thorough
analysis of that equation for N = 41 and -£4.

We shall give a third application of Pell’s equation, this time to the
minimum of an indefinite quadratic form, later in this chapter. There
will be others in Volume II.

PROBLEMS

*]. Let d be greater than 1 and square-free, and let o be in R[\/&]. Show
that if d 2 1 (mmod 4), then
a=a-+ b'\/(—i, a, b integers,
while if d = 1 (mod 4), then

a = _a_iéb_\_{_é ’ a, b integers such that a = b (mod 2).

[Hint: First show that if & is the conjugate of & in R(\/t_i), then o + & and
a@, and therefore also 4a& — (a + @)%, must be in R[\/c—il.]

2. Show that a is 2 unit of R[V/d} if and only if Na = 1.

3. Find some solutions of the Diophantine equation

22+ Gy — 4y® — 4z — 12y — 19 = Q.

8-2 The case N = 1. For the present we shall concern our-
selves with the equation
22— dy? = 1. (1)
The case in which d is a negative integer is easily dealt with: if
= -1, then the only solutions are =£1,0 and 0, =1, while if
d < —1, the only solutions are +1,0. So from now on we may
restrict attention to equations of the form (1) withd > 0. Ifdisa
square, then (1) can be written as

2 — (dy)* =1,

and since the only two squares which differ by 1 are 0 and 1, the only
solutions in this case are £1, 0. Suppose then that d is not a square.
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TueoreM 8-1  For any 1rrational number £, the snequality

1
le <= @
l v
has tnfinstely many solutions

Proof According to Theorem 7-1, 1f £ 15 irrational the mequalities
1
0<|I—fy|<7' 1<y<4 ®)

have & solution for each positive integer £ It 18 clear that each solu-
tion of (3) 1s also a solution of (2) Taking ¢ =1 m (3) gives a
solution zy, 4y of (2) Then for swtable & > 1,

1

ler — gl >

1

and taking ¢ = # 1n (3} gives a solution x2, vz of (2) Since
le2 — &y2| < |21 — El,

the two solutions so far found are distmet Now choose £ > ¢ s0
that

1
lez — &l > o’
3
and for ¢ = ¢, find a3, ¥; Clearly this procedure can be continued
mdefinitely, yielding infinitely many solutions of (2)
THEOREM 8-2 There are infimlely many solutions of the equation
2 ~dP? =k “@
n posuiave integers , y for some k with |k < 1+ 2V
Proof 1f z, y 15 a solution of (2}, then

lz+y\/«§!=|r—y\/2+2y~/31<i+2u\/-?s(1+2\/E>y.
and so Jo — dy?| <117(1+2\/E)y= 142Vd

Since there are infimtely many distinet pairs 2, y available, but only
finutely many integers numencally smaller than 1 + 2V/d, mfinitely
many of the numbers 22 — dy® must have a common value, which 15
the theorem
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TreorEM 8-3. Equation (1) has at least one solution with y # 0.

Proof : Separate the infinitely many solutions of (4) into &2 classes,
putting two solutions z;, y; and 22, ¥» in the same class if and only if
7; = x> (mod k) and y; = y2 (mod k). Then some class contains at
least two different solutions, say x1, ¥; and zp, yg, with zyz, > 0. Put

Ty — dyl?/2, o T2 = T

we shall show that z and y are integers with y0 for which 22 —dy®=1.
It follows immediately from the congruences
zy =2 (mod k),  y1 =y (mod k),

that
T1Y2 = xoy1 (mod k),

and so y is an integer. Also, from these congruences and from (4),
1%y — dy1yp = ,? — dyy® = k= 0 (mod k),

and so z is an integer. Furthermore
1
- dy? = 2 (@122 — dyry2)? — d(@1y2 — 221)°)
1
=% (12707 — dziPys® + Py’ — dzo’r®)

1 .
=2 (1% = dy ®) (o — dys®) = L.

Finally, if y = 0, then
T1Y2 = Layi,

so that for some a, £; = axy and y; = ay,. But since x;, ¥; and zo, Y2
are both solutions of (4), it must be that @ = 1, contrary to the as-
sumption that 2y, y; and x5, ¥, are different solutions.

'THEOREM 84. If xy,y, and xg, yo are solutions of the Pell equa-
tion (1), then so also are the infegers x, y defined by the equation

(@ + 11 Vd) (23 + 12 Vd) = z 4+ yVd. (5)
Proof: Tt follows from (5) that also
(21 ~ yl\/a) (x2 — 1/2\/3) =z - ?/\/E;
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and multiplymg corresponding sides of these equations gives
2 — dy? = (@ ~ dy?) ()’ — dy) = 1
In particular, 1t follows from Theorems 8-3 and 8-4, taking
1 = Z3, Y1 *= Yg, that the numbers z, y defined by
@+ nVar =z +yVi

form a solution for every positive value of 2; that thisis also true for
negative values of n follows from the fact that

! Ty~ !/1\/';

2 +n

‘We shall now show that a general solution can be obtamned 1n this

fasion For brevity, we shall refer to z - U\/Ey aswellasz, y, asa

solution of equation (1} It will be called positwe 1f z > 0 and

y >0 The positive solutions will be ordered by the sze of z, or

what 1s the same thing, by the size of z + yv/d, sinee if 7, + 1 Vd
and 22 + y;\/ﬁ are positive solutions, and 2y > xp then

2+ nVa > 2 + 12 VA,

and eon ersely

TueoreM 8 5 If 21, 1 18 the mummal positwe solution of equa-
tion (1), then a general solution s guen by the equation

4 gV = 2@ +n VA" ®
where n can assume any wnlegral alue, posutwe, negatwe or zero
Remarh Because of this theorem, the mimmal positive solution

of (1) 13 sometimes called the fundamental solution
Proof That (6) actually furnishes a solution for each n > 0, we
have just seen  Since

@+ yVa™ = @ - yVar,

(6) also gives a solution for each n < 0 Since the solutions with

y = 0 correspond to n = 0 1t suffices to show that (6) gives every
solutron with i #¢ 0 Furthermore, 1f 21, 1 and = are positive and

z+yVd= @ +pvar>1,
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then —z+ (—y)Vd = — (@ + V" <1,
g+ (—Vid = @ +pvVdy™ <1,
—z+yVd=—( + ypVd)y™ < 1,
so that it suffices to show that every solution of (1) with both z and y
positive (so that z + y\/g > 1) satisfies the equation
z+yVd = (@ +pvVd", n>0.

Putz; + y1 vV d = e; then if z, y is any positive solution of (1),
z + yVd > a, since o is minimal. Hence there is ann > 0 such that

" Lz y\/g < o,
But then

1< (z+ y‘\/(—i-)a-" = (x + y\/&) (z1 — yl\/Zl-)" < a,
and this, by Theorem 8-4, contradicts the minimality of « unless
@+ yVd) (@ — p V)" =1,

whence

¢+ yVd = (& + pvar

Turning now to the case N = —1, we find a somewhat similar
situation, with the essential difference that the equation is not always
solvable. This is the case, for example, when d = 3, {or the expres-
sion z° — 332 assumes only the values 0, 1, and 2 (mod 4). However,
it is again true that all solutions can be expressed in terms of a single
one, when such exists.

TrareoreEMm 8-6. Let d be a positive nonsquare infeger. Then if the
equation
22 —df = —1 )

is solvable, and if z, + 6,Vd is the minimal positive solulion, a
general solution is given by

e+ tVd = (g + 4y VA, n =0, £1,..
With the earlier notation,
a =z +yVd = (21 + 4V

Proof: We prove the second assertion first. It is clear that
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(22 + 6 Vd)? 15 & solution of (1), so that

1<n+nvis @+ avd? ®
Ths gives
—a+4VE < ~am 4 dnb + (—an + b))V S a + Ve,
where the number 1 the center of this mequality (which we will call
2+ V@, for the moment) 1s agam & solution of (7), so that
particular £ £ 0 But f a number lies between the minimal positive

solution of (7) and its reciprocal, the same 1s true of the reciprocal of
that number, so that either

1<z +tVd <o +4,Vd
or

1< —z+tVi<n+4uvVd
Using the mmimality of z; + t;\/&, we conclude that
t+ VA= o+ 4VE

Now suppose that z + 43/d 15 any solution of (7}, where we can
agan restrict attention to the case z, ¢ > ¢ Then as n the proof of
Theorem 8-5, we can find an n such that

1€ @+ 1vVDa™ <a= (& + uVD?
or, dividing through by z; + 6V,

—a+uvVa<y +yVi<a+4vd
where 2’ + y'V/d satisfies (1) This mequality mmphes that

dtd by VI <a,
so that &' + ¢/ Vd = 1, and
2+ tVE = @ + 4 VA" = @ + 4 VI
PROBLEMS

1 ¥ind a general solution of the equation z* ~ 2% = 1
2 Desenbe all the ntegral solutions of the equation

24 Gy A+ T H B 2y + 15 =0
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3. Show that

1
lim inf (a(nV/2 — [2V/2))) = —=-
n— ( ( [ ) 2‘\/:‘2
[The assertion means simply that if a, stands for the quantity in paren-
theses, and if € > Q, then
14-€

N2

an <

for infinitely many =, while
1—e¢

an >
/2

for all sufficiently large n.]
4, Show that a pecessary condition that the equation z? — dy? = —1
be solvable is that d have a proper representation as a sum of two squares.

8-3 The case |N| > 1. Because of its special interest in connec-
tion with the units of real quadratic fields, we consider separately the
case |N| = 4.

THEOREM 8-7. Let d be positive and not a square. If r1 + s1Vd is
the minimal positive solution of the equalion

72 — ds® = 4, 9)

then a general solulion is given by

r+s\/‘=i2(r—‘—i23i\—/—‘§>, n=0,%1,.... (10)

If the equation
7?2 —ds'? = —4 11)

is solvable, and its minimal positive solution is ;" + s’ Vd, then a
general solution is given by
7 ’ 2n+1
s d=:1:2(7—'1——_*——g—1—@> ) n=0,=1,...
Proof: Clearly, the double of any solution of (1) is a solution of (9).
While this remark shows that (9) is always solvable, not all the
solutions can necessarily be found in this way, since, for example,
32 — 5-1% = 4, and 3 and 1 are odd.
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1f r -+ 8,8/d and ra + 53V/d are any solutions of (9), then
\/"
rtavde 2r;+s; d r;,+s;\/_

15 another integral solution  For, from (9), r? = ds,? (mod 2), so
that r, = ds, (mod 2) Hence

2r = rarg + digsg = dPsy8y + dspsy = A(d + 1aysy = 0 (mod 2)
and

25 = 183 - a8y = dsz83 + dszs; = 2dsys3 = 0 (mod 2),
so that r and s are mtegers  Also,

(r+sVa)r —sVd) = 1? —dsf = 4 2——2 =4

It follows that the numbers r + #v/d defined {10} are solutions
of (9), for everyn The remamder of the proof for the case N = 415
an easy modification of the proof of Theorem 8~5 The proof for
N = —41sa straightforward combination of the ahove considerations
and the proof of Theorem 8-6

For peneral N, the situation 1s rather complicated The following
theorem gives a partial result

THEOREM 8-8 If 4 > 015 not a square, and 1f the Pell equalion

w—df =N (12)

has one solution, 1t has wfinalely many  In partcular, of 23,9150

solutron of equation (1) and uy, vy 15 @ solution of equation (12), then

the integers u, v determaned by
ut o V= (@ + 5 VO +n V), 3)

Jorm a solution, of equation (12)

Proof The second statement 15 proved m exactly the same way
as was Theorem 84  The first statement follows mmediately from
the second, making use of Theorem 8-5

Notice that 3t may not be possible to obtan all solutions of (12)
from one solution and the set of all solutions of (1) For example,
the equation u? — 257 = 49 has the solutions 7 and 9 + 4v/2, and
neither can be obtained from the other by multiplying by a solution
LESEAED]
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Theorem 8-8 can be used to obtain a finite criterion for the solva-
bility of (12). If two solutions of (12) are related as in (13), we say
that they belong to the same class. We now find bounds on the
smallest element of each class, where the solutions are ordered by the

size of u. (We can require that « be positive, since « -+ vVd and
—yu — vV d are in the same class.) The investigation is carried out
only for N > 0; the case N < 0 is similar.

To do this we ask, given a solution u; + 2;Vd of (12), with

y; > 0, when is it possible o find a smaller solution % - v\fd, with
u > 0, in the same class? That is, we want to find « and » such that

w4+ oVd = (x-}-y\/g)(ul-*—vl\/;l_), 0 < u<uy,
22 — dy? = 1.
Let @ = 7; 4 y1Vd be the minimal positive solution of (1). If
v; > 0, take = 4 y\/— =gl =g — yn/c.i; while if »; < 0, take
x+ y\/g = ¢; in either case, we get
)
1

u = wmz — pijwld = w <$1 - yl\/t_ihl—l?IT*

=ul{x1'_yl\/‘—j+yl\/¢—i<1 —‘\/1 “%’}

Here 0 < N/u;? < 1. Since
0<1—V1-t=
for 0 <t < 1, we have
0<u<uwy <o['1 +

¢

4
<
1+V1—-¢ 2-1t

211\/&_ N
2u12 - N

A little manipulation shows that the coefficient of u; is smaller than 1,
50 that u < u, if

u > /MN, where 8 = .
2 a—1

Since yl\/_ = V¥ — 1 < z,, we have proved
THEOREM 8-9. If equation (12) is solvable, it has a solution with

Bri + 1
2

O<u< N, (14)
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where & = 21 + y1Vd 18 the memmal posilive solution of equatzon (1)
and 8 = af (@ — 1)  If there are hwo or more classes of soluttons of
equation (12), each conjarns an element for whach equatron (14) holds

This reduces the question of the solvability of (12) to a fimte
problem, once the mmmal positive solution of (1) 1s known, 1t
suffices to decide whether any of the numbers (u? — N'}/d 18 2 square,
for v 1n the nterval (14} If there are two or more such values of %,
1t 13 a sumple matter to decrde whether the corresponding solutions
are m the same class

For example, when d = 2 we have the mimmal positive solution
37 ~2 27 = 1,and1t1s easily seen that (14) holds:f 0 < u < VN
Since also N = u? —~ 2v* < u%, we need only examune the mntegers u
between VN and VN, for each N

PROBLEMS
1 Complete the proof of Theorem 8 7
2 The statement obtained from Theorem 8 7 by replacing 2 and 4 by
7 and 49, respectively, 15 false 23 13 seen by consdering the numerieal
example tmmediately following Theorem 8-8  Where would the analogous
proof break down?
& Show that if ¥ < 0, Theorem & 9 remans correct 1f the imequality

(14) 15 replaced by
VU< \FEES

{Hwnt Proveand use the fact thatfort > 0 V1 +¢— 1< #/2}
4 Desenbe all the units of B(V'2), of R(V/5) CI Problem 1 Section
81

84 An application  We showed 1 Theorem 8-1 that f £ 1s 1rra-
tional the inequahty

1
F--l<5

Y

has nfimtely many solutions m mtegers z, y It 1s the object of the
present section to make a more detaded examination of the approx1
mability of a d lity (that 1s, an ] root of &
quadratic equation with integral coefficients) by rationals, making
use of the preceding results concermng Pell's equation

¥y
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It is easy to see that when £ is a quadratic irrationality, there is &
constant go = go(£) such that the inequality

T 1
—— <—-—
IE y ?

gy

does not hold for any «, yif g > go. Forif £ is defined by the equation
J@&) =at® +bt+c¢c =0, a, b, ¢ integers,

and if f(z) factors as

f@) = al@—~ @~ ¢),

then
x| laz® + bzy 4 o] 1
l T VR =l = P =
since az® 4 bxy 4 cy? is an integer different from zero. Since £ is
irrational, £ # ¢/. Hence from the above inequality, either

z e — &) x‘ 1
NS NG L T - 2 e
£=3 > T e — 02

and we can take

2 2
g(§) = min (lE — ¢ 3la ] — E')/2l>

for any e > 0.

We are thus led to consider the quantity M (£), which is the upper
limit of those numbers X for which the inequality
1

<3

z
E —_—

Y
has infinitely many solutions. It was first treated by A. Markov, who
made an extensive investigation of M (¢) in connection with the
problem of determining an upper bound for the minimum value
assumed by an indefinite quadratic form, i.e., an expression

A2? 4 Bxy + Cy?

in which D = B? — 44C > 0, D is not a square, and z, y are integral
variables. Markov made use of the theory of continued fractions,
but we shall derive certain of his results using only the theorems just
proved concerning Pell’s equation.
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In order to avord interrupting the argument later, we first prove a
lemma
TaporEM 8-10  Lel
fz,y) = aa® + bay -+ o
have wntegral coeficrents such that d = b* — dac > 0 and d 15 not &
square  Then 1f the equalion
Sy =k 1s5)
has one solution 1n wnlegers, 1t has wnfimtely many, and each of the
two quantihies
|2ax + by + yVad|  ond |2z by —yVa|  (16)
18 less than any prescribed posiirve number for infinalely many such
solutions
Proof (a) In the case k = a, let X, Y be integers such that
X2~ d¥*? =1, s0 that
4a?X? — 40%dY? = 40*
If we put
2¢X = 2az + by, 2aY =y,
1 which case # and y, given by
z=X-bY, y=2¥, an
are integers, then
ez + by)* — dy? = 4af(z, y) = 4a?,
or
J@y) =a a8)
Since by Theorem 8-5 there are mnfinitely many pawrs X, Y, there are
mfimtely many solutions of (18) Since
2 b\ 4a?
lim {(—“”—y) - d] —m i,
yam ¥ ye U
1t 15 clear that one of the quantitics in (16) 1s smaller than any pre-
seribed e > 0 for sufficiently large ¥ Moreover, 1if the wmtegers z, y
determined by X, ¥ 1n (17) are such that one of the quantities in (16)

15 small, then the numbers z’, ¢’ determined by X, — ¥ are such that
the other quantity 1s small
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(b) In the case k 5% a, let z1, y1 be & solution of (15), and z,, ¥2 &
solution of (18). Then the integers z, y defined by the equation
(2azy + byy + y:1Vd) Qaz; + by, ~ yoVd)

2a
again satisfy (15). Since there are infinitely many solutions of (18),
the same is true of (15). Furthermore, for fixed z;, y;, the first
quantity in (16) will be small if x5, y, ranges over those solutions of
(18) for which |2azs - by — yg\/al is small, while the second will
be small for the remaining solutions of (18).

20z + by +yVd =

TrareoreM 8-11. Let £ be a real quadratic irrationality of discrimi-
nant d:
a2 +bt+c=0, d=0b—4ac>0, dnota square,
(a,b,¢) =1, a > 0.
Then if k 1s the smallest positive integer for which the equation
laz® + bzy + ey = &

has an integral solution,

M(E)=%'

Proof: (a) M(¥) must be less than or equal to \/E/k. For
assume on the contrary that

e = Yo,
(1~ &)k
where 0 < § < 1. Then the inequality
Vd—b z _(1—8k
2a Y Vdy?

holds for an infinite sequence S of distinet fractions z/y. (The case
that £ = (~b — \/&) /2a is treated similarly.) Then, multiplying
through by \/3, we have

bz _g) -8k
<2a+y>\/g 2a‘< ¥

_dy 2a(1 — &)k
20z + by|  y[2ax + by

or I\/E
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Hence

2a(l — 8k Vi
d
yiZaz + byl Yoty

ay &y
> - Z
(2az + by)
4akd

2 2>m'
V laz® + bzy + | = Qax + 07

_ 4ad
{20z + by,
and, therefore,
> 2dy
"7 |2z + byl VA + dy/ ez + by)l
_ 2d
T b+ 20z/y] |V + dy] 20z + by)|

But 25 z/y runs through the sequence S, y mcreases without himit and

1 -

19)

b+ 2a;-—> Va,
dy
\/E+2u ¥ by—»zﬁ,
so that
24
lim =1,
2o+ 20z/yl 1V + dy/(@ax + by)]

which contradicts (19)

(b) M (&) must be greater than or equal to Vd/k For from the
definitton of k, and Theorem 8 10, we have that the equation

|2az + by)* — dy?| = dak
has mfinitely many integral solutions z, y  The left side factors into
|2az 4 by — y V| |20z + by + v Vd| = 4ak (20)

By Theorem 8 10, each of these factors 1s small for mfimtely many
pairsz, y  Henceforth we restrict z, y to the set T of solutions of (20)
for whuch the first factor 15 smaller than the second  (The proof m
the alternate case proceeds similarly ) Then

z_ =b+Vv@

Y 2a
a3 ly| tends to infimty Furthermore,
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z —b+ Vi ] _ 4ak
y  daely + (b + V) 2aly?
k
" ala/y + &+ V) 20l
b+Vd Vd
and 5 2w o
as |y tends to infinity. Hence, given e > 0, the inequality
s —b+ VAl k(1 +e
y 2a y2 Vd

holds for all (z, y) € T with |y| > yo(e). Hence M(£) > Vd/k.
The proof is now complete, since if M (¢) > Vd/k and also
M) < Vd/k, it must be true that M (¢) = Vd/k.

Corovrany. If &4s defined as in Theorem 8-11, then

?SM(E) < Va.

For clearly & > 1,and k < asincea-124+b-1-0+¢-0% =a.

PROBLEM

Generalize the result of Problem 3, Section 8-2, evaluating

lim inf n(eV'm — [nV'm)),

n— o

where m is a positive square-free integer.

8-5 The minima of indefinite quadratic forms. So far we have
used Theorem 8-11 to obtain information concerning the quantity
M(£); it can also be used, in conjunction with the following well-
known theorem of A. Hurwitz, to obtain information about the
numerically smallest value assumed by an indefinite quadratic form.

TaeoreM 8-12 (Hurwitz’ theorem). If & is any trrational number,
then there are infinitely many integral solutions z, y of the inequality

1
V5 42 5y
Consequently, M (£) > /5 for every irrational .

-
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We defer the proof for a moment Assuming the theorem to be
correct, a companson of 1t and Theorem 8-11 yields the following
result

Treorey 8-13  If f(z, y) 1s an windefinite binary quadratic form of
nonsguare discryminant d, then

0 <If(z ) Sé‘;

Jor suatable wnlegers z, y

‘The coefficient 1/ V5 occurring here 1s best possible, i the sense
that the theorem becomes false (for some quadratic forms) if 1/v5
15 replaced by a smaller constant  For the form k(z? + zy — 3%) has
fiscriminant Bk?, and 3t 1s clear that this form assumes no nonzero
value numerically smaller than k(12 + 1 0 — 0%)| = [k}

8-6 Farey sequences, and a proof of Hurwitz’ theorem A very
sumple proof of Hurwitz' theorem can be deduced from the well-
known properties of the so-called Farey sequences Fn, which are the
sequences of rational numbers a/b with 0 <b<n, (a,b) =1,
arranged i increasmg order of magmtude Thus for the first few
values of n we have

-1012
P TOTTT
10113
Fa T
1011214
F TR
1011123135
Fy TTIYYTRITY
P Zitol112132341°§6
s 5 1'5'2'8'5'2'5'3'4°5°1'5

Clearly the number of elements of ¥, which lie between 0 and 1 inclu
aversl+e(l) +o2)+  +o(n)
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The rational numbers p/q and r/s are said to be adjacent in Fp if
they are successive elements of Fy.

THEOREM 8-14. (a) If p/q and r/s are adjacent in F,, then

lps — grl = 1. o
(b) If |ps — gr| = 1, then p/q and r/s are adjacent in Iy, for

max (g, ) Sn<g+s
and they are separated by the single element (p + 1)/ (q + s) in Foye.

Remark: This theorem on the one hand gives necessary and suffi-
cient conditions that p/q and r/s be adjacent in F,, and on the other
hand gives the law of formation of the new elements that appear in
going from F, to Fnyy. The number (p + r)/(g + s) is called the
mediant of p/g and r/s.

Proof: Suppose that p/g and r/s are elements of F, such that
gr — ps = 1, so that r/s > p/q. As ¢ varies continuously from zero
to infinity, the number
p+ir
qg+1s
increases steadily from p/q to r/s, so that there is a one-to-one cor-

respondence between the positive real numbers ¢ and the points of
the interval

J@) =

r
Per<l. @1)
g s

Moreover, it is clear that f(7) is rational if and only if ¢ is rational;
since we are interested only in the rational numbers in the interval,

we put £ = u/v, where (v, v) = 1 and u > 0,» > 0. This gives
f(g) _vptur
v] vg -+ us
qop + ur) — plog + us) = u(gr — ps) = u,

sp + ur) —~ r(vg + us) = v(ps — qr) = —v,

we have (vp + ur, vg + us) = 1. Thus we have shown that as x and
v run over all pairs of relatively prime positive integers, the reduced
fraction (vp + ur)/(vg + us) runs over all rational numbers between
p/q and r/s.

Since
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Among these fractions, the one with %z = v = 1isclearly the unique

one of smallest denomunator, It 13 the mediant of p/g and r/s, and

fe+rg—(@+apl=1 [rlg+s)—sp+nl=1
Since ¢ + s> max (g ), part (b) of the theorem follows To
prove (a), we proceed mductively Fy consists of the itegera

,—1/1,0/1,1/1,  ,andfa 1 — (a+1) 1] = 1, sothat (a)1s
trueforn = 1 If1t1s true for n = m, 1t 18 also true forn = m + 1,
smee the only elements of Fuqq not 1 £, are certatn mediants of
adjacent elements of F,, The assertion follows by the induction
prineiple

Proof of Huruntz' theorem 1f a/b 1s a reduced fraction and c1s &
positive real number, designate by I.(a/b) the closed interval

a 1 a 1
g5+ T]
Hurwitz’ theorem says that if £ 13 wrrational, there are mfinitely many

fractions z/y such that ¢ € Iz(z/y)
For each n, £ Lies between some two adjacent elements of F,, say

Pee<t
q z
We dmade the intetval [p/g, r/s] into left and nght halves
- 1_JP+T] __[P+f r]
T [q’q+, S [
We now ask, how large may ¢ be if it 1s required that the three 1nter-
vals I{p/q), I.((p + r)/(g -+ $)), I.(r/5) together completely cover
the mterval Jr? If thes 1s the case, and ¢ € Jz, then ¢ must be an
mnterior pomt of one of these intervals 7, and we have a solution of
the iequality & — z/y| < 1/cy?
Cleatly I.(p/q) and I.(r/s) overlap (or abut) 1f and only if
p, 1 r 1
—_sr L
q + s e’
and this reduces, with the aid of the relation rg — ps = 1, to

1 1 s, q
<gf5+5)=2
ssep )=o)
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or, putting f(z) = « 4 1/z, to
c<f <§> .
q

Similarly, I.(p/q) and I.((p + 7)/ (g + s)) overlap if and only if

<o (1) s+

and so Jy, is certainly covered by the intervals I, if

¢ < max (f(s/9), (1 + s/9)),

and a fortior? if

¢ < min {max (f(z),f(1 + 2))}
z>

I

Co.

But a glance at the curves y =
f(z) and y = f(1 4+ z) shows that
the curve y = max (f(z),f (1 +x))
is concave upward for z > 0, and
has its minimum ¢, at z = x,

y

where f(zg) = f(1 + 2). (See 3 y=f(z)
Fig. 8-1.) A simple caleulation '
gives L z
\/_ 0 Zo 1
Ty = 52— ! ) ¢ = V5. Ficurs 8-1

The proof can now be completed in either of two ways. The simpler
is to note that £, being irrational, must lie, for infinitely many n, in the
left half Jy, of the interval between its surrounding Farey points;
for if not, it would have to lie in all the intervals

i B Gl
q,s ) q+s’s ’ q+28 s ceay
and the only point common to all these intervals is r/s itself. And

whenever £ ¢ Jy, the above argument shows that at least one of the
numbers

P pEr A

)

q q+s’ s

affords a solution of Hurwitz’ inequality. Finally, this gives infinitely
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mzny solutions, because £ lies 1 mfimitely many Jr’s and infimtely
many Jg's, so that only fimtely many of these mtervals have a

common end pomnt

Alternatrvely, one can also examne the cond:tions ynder which the
mtervals I (p/0), 1.((p + /(2 + ), and L.(/s) completely cover
the interval Jg, an argument stmiler to that given above shows that
this 1s the case 1f

el v

It 13 then not necessary to distingwsh the cases { € Jy, ¢ Jp

Agam using the fact that £ hies in infimitely many left half intervals
and mfimtely many nght balf-ntervals, we deduce the following
stronger form of Hurnitz’ theorem

TuEoREM 8-15  If £ ts srraional there are infinttely many solutions
of the wnequalily

(22)

1
< —=
V5y?
If, for arbutrary n, ¢ lies betueen the adjacent elements p/q and r/s of

Fu, then at least one of the three numbers p/q, (p + r)/(q + 3), r/s
18 @ solution of the inequahiy (22)



CHAPTER 9

RATIONAL APPROXIMATIONS TO REAL NUMBERS

0-1 Introduction. In the investigation of the solvability of the
equation n = z® 4 y? in Chapter 7, it was convenient to use the fact
that if « is real and ¢ is a positive integer, there are integers p and ¢
such that

lgz — pl £ 1<¢<t

t+1'
In connection with Pell’s equation we used an easy consequence of
this theorem, that if z is irrational, the inequality

lgz — pl <
q

has infinitely many integral solutions q and p with ¢ > 0. Finally,
the investigation, in Chapter 8, of the numerically smallest nonzero
value assumed by an indefinite binary quadratic form hinged on
Hurwitz’ theorem, which states that the inequality

1
lgx — p| < \/5(_1

has infinitely many integral solutions ¢ and p with ¢ > 0, if z is
irrational. These theorems, while quantitatively different, all tell
something about how small the absolute value of the linear form
gz — p can be made if the integers ¢ and p are not both zero. Several
generalizations of this problem come to mind at once, involving either
a larger number of variables, or more than one such form, or both.
The investigation of the behavior of such sets of forms is a central
problem in the theory of Diophantine approximations; while many
results have been obtained, few of them have the quantitative pre-
cision of Hurwitz’ theorem, which becomes false if /5 is replaced by
any larger constant. (This statement has not yet been proved; it is
a consequence of Theorem 9-9.) One reason for this is that it is only
in the simple case of one linear form in two variables, that a simple
159
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algorithm can be constructed whch yields all the pairs p, g for which
lgz — pl 1s “small,” m a sense which will be made expliert below,
Naturally, 1t 15 much easier to investigate the small values of a func~
tion of one knows what values to use for the arguments One of the
objects of this chapter 1s to develop this algonthm

Rewnting Hurwitz’ inequality i the form

P 1

o < Vag
we see that we are here concerned with a notion of “good” rational
approximations to an irrational number which differs essentially from
that generally understood 1n analysis There, we say that p/g 13 8
better approumation to x than 1s r/s if

The questron of finding this kind of good approximation 1s rather
uninteresting anthmetically, although of course 1t may be necessary
to use approximate values of irrational numbers in anthmetic m-
vestigations What 15 mnvolved mn the theorems we are now discussing
12 of the of the with the size
of the denominator of the fraction used, the companson being effected
by talung the product.

2

P,
q

At least 1f 2 15 wrrational, the first factor in this product gets large as
the second approaches zero, for out of all the elements of an arbitrary
Farey sequence Fy there 15 one which 1s nearest to z, so to find a
mearer rational number 1t 18 necessary to consider fractions whose
denomtnators exceed N To require the above product to be smallis
therefore a much stmnger condlhon than that imposed 1n analysis
Instead of for fractions corre-
sponding to a given z, 1t 1s frutful (and mdeed necessary, to make
precise the meaning of “appropriate”) to make z, instead of p/g, the
unknown quantity That 1s, we fix a rational number p/g, and ask
what numbers should be considered as having p/q as a good approxi-
mation  Put 8o crudely, the question 1s unanswerable, we must
decide what other rational numbers are competing with p/g It
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seems natural to consider just the elements of some Farey sequence
Fjx which contains p/g, and to say that p/q is a “good” approxima-
tion to z if, for some N > g, |gz — p| < sz — 7| for all r/s in Fy.
This is perhaps most easily thought of this way: we measure distance
from p/q in Fy, not by the usual expression [z — p/q|, but by
qlz — p/g|, so that there is an individual measuring rod (or, more
briefly, a mefric) associated with each element of Fiy. It is clear that
“Jistances” increase more rapidly (in comparison with ordinary
length) when measured from an element of F with large denominator
than from an element with small denominator. We now associate
with p/q all those points z such that the “distance” |gz — p| from
p/q is less than or equal to the “distance’ sz — 7| from an arbitrary
element r/s of Fy. Call this set of points Ey(p, q); formally,
Rx(p, ¢) is the set of = such that
min (Jsz —r]) = lgz — p.
r/eC Fy

Clearly, p/g itself is in Ry (p, g).

Each of these sets Ry (p, q) consists of a single tnlerval. To see this,
we first prove that if p/q and r/s are adjacent in Fy, then no point 2
between them belongs to any Ry (¢, u), if {/u is neither p/q nor r/s.
This is obvious if z is either p/q or r/s. Suppose that

ﬁ < e <z < z ;

u q s _
the other possible order, in which t/u > r/s, is treated similarly. If
g < u, then

4 4
0<qx—-p=q(x—g><q<x——>$u< -——)=ux—-t,
q u u

so if the assertion is false, it must be that ¢ > u. But then if

gr — p = uxr — i,
50 that
2> Pt
q—u

we have

0<r——s:c<r—sp—t (qr-—sp)—(ur——sz) <0,
g—u g—u

sincegr — sp = 1whileur — st > 1. This contradiction shows that



162 RATIONAL APPROXIMATIONS TO REAL NUMBERS  [cmar 9

Ry (p, q) does not extend past the two elements to which p/g 1s
adjacent n Fy  But the condition

lgz — 9] < Jsz — 1

mves gz —pEr—osz,
?+ T,
or z<
g+s
50 that Ry (p, ¢) consists of all z hetween the two pomnts which are the
of p/g end 1ts mFy

In particular, 1t follows that the new pomnts which appear in going
from Fy to Fayy alnays appear at end pomts of mtervals Ry

‘We now adopt the following convention 1if for some N, the number
213 a pont of Ry (p, g) then p/g will be called a best approzimation
tozr TFor this N, lgz ~ p} 15 less than or equal to any expression
lsz — vl with s < N, a forhiort, | — p/q| 13 less than or equal to
{z — r/s| 1f 5 < ¢ so that if p/g 1s a best approximation to z 1o our
present sense, 1t 1s also the rational number closest to z (in the ordi-
nary sense) out of all those with denominators not exceeding ¢

There 13 thus associated with a fixed z a umque sequence of best
approximations, the sequence will be wfimte unless z 18 rational, 1n
which case  hes inside 1ts own interval Ry, for N greater than or
equal to the denomunator of z  (For rational #, the sequence 1s not
quite unique, since z 15 a common end pomnt of two intervals Ry for
some N) If ¥ > ¢, Ry4a1(p, 9) 15 contamned 1 Ry (p, ¢), so that if
P/ 13 2 best approximation to z, then certamnly z 15 Ry (p,¢) Ii &
1s the largest non negative integer for which 2 € Ryyp(p, ¢), then
z€RN(p, g} forg <N < ¢+ h Thus, 1if for fixed z we defineay/bv
for N = 1,2, as that ratienal number such that z € Bx(ax, by),
then for suitable No, Ny, wehavel = Ng < Np < Nz < and

avg _ G4 _ % _ 0N O
bag b b2 bar1r” bw
oy _ G _ CNact O
b bnn ba1 bm
oNe _ Shest = Nt 0Ny

bv: bagn baes bya
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Since any_1/bak_ and an,/by, are adjacent elements of Fy,, we have
[br@ngy — dnpagni] = 1, E=1,2,.... 1)

Now consider the following problem: given a real number z, to find
a systematic method for determining the sequence of best approzimations
to z. We begin by reducing = by its greatest integer [x] = Ag; the
new number z’ = z — [] is then in the interval (0, 1). Put Py = g,
Qo = 1, so that Py/Q is or is not a;/b; according as the fractional
part 2’ of  is less than or greater than 3. (In what follows, we shall
assume that if z is rational, its denominator is sufficiently large that
equality does not occur in statements such as the preceding one. This
point will be considered in detail later.) If Po/Qy = a;/b;, we put
P/Qr = an,/byy, whileif Po/Qg # ay/by we put P/Qr = any_y/ONi_y,
for k=1,2,.... Thus the sequence {P./Q.} coincides with
{an,/bn.}, except that Po/Qy may not be a best approximation. If
we also put P_; = 1, @_; = 0, then

QoP_1 — Q1P = 1. 2)

The numbers Py/Q1, P2/Qs, . . . are now to be determined. It turns
out that this can be done using an algorithm, closely related to the
Euclidean algorithm, of considerable importance in many branches of
mathematics. Unfortunately, the deduction of this algorithm is
necessarily somewhat complicated, since one must obtain the se-
quences { P} and {Qx} from three others yet to be defined: {az}, {1},
and {M;}. The final result, however, is quite simple.

If Py/Qy = ay/by, the relation

|{QPr — QP =1  k=0,1,..., (3)
holds, by (1) and (2). If Py/Qp = a,/b;, then
Py Py
—_—— — = 1’ = = 1
AN O Qo % % '
and
lQlPo - Q0P1| =1, (4)

so that (3) again holds, by (1), (2), and (4). The relation (3) is
therefore always valid.

The numbers P, and Q; are now defined recursively, as follows:
P_y=1,Q0,=0P=[z],@ =1, and, for k > 1, P, and Q) con-
stitute that solution p, q of the inequality



164 AP TG REAL [crar 9

fez — ol < @z — Pral

for which ¢ 1s positave and mummal If we put ax = Qkz — Py for
k=0,1, ,wemustfind the mumumal solution of the mequalty

gz ~ o < lesyl

Fortunately, we need not consider all pairs p, g, but only those for
which
Phag = Gapl = 1,

on account of (3) Since we know that one solution of this equation
189 = Qug, p = Piy, 1t follows that every solution 1s of the form

¢ = @iz -+ M), = ¢(Prg + M), ®)
where ¢ = =1 and X 15 an mteger, so that
lgz — pl = W(@iuz — Prt) + Q2% — Pia)l = Dary + ool

Thus we can rephrase the defimtion of P; and @, of k> 1 and
Py and Q; are known for 1 < k, then Pe, Qg are the p and g of equa-
tions (5) if X and « are so determmed that

Aar + aral < [art, €@ ++ Qrz) 15 positive and munimal

Bince 1 > 0, these conditions are 1o the fol] =.
,x —( - 1, e{l - (— QL’)} positive and pummal  (63)
e Q.

To see how to solve (6;) let us consider the case & = 1 We have
a3 =0 x—-1= -1 =1 z~[z),

50 that (6:) becomes

1 0
A - Py <1, e (x - {) positive and minmal {61)
The number -1
TTECE

13 larger than 1, so that the two integral solutions A of the 1equslity
of {61) are positive, the solution of (61) 1s clearly

A= =lad e=-+1
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This gives Py = MPo + P_y, Q1 = MQo + Q,
Q1Po — QoP1 = (MQo + Q—1)Po — Qo(MPo + Py)
= —(QoP—1 — Q_1Po),
and since QoP1 — QaPp=1-1—0-=1,
we have Q1Py — QoP; = —1.

These calculations provide a basis for an inductive proof of the
following theorem.

THEOREM 9-1. Pul zq = z, and define
1

T = ————
Tpq — [Tr_1]

for1 <k<n++1,

where 1 is the smallest index for which z, — [x,] = 0, 1f there is such,
and 1s infinity otherwise. Then for 1 £ k < n 4+ 1,

app

XTp = — ) (7)
Q1
and the solution N\ e of (6x) is N = M = [z4), ¢ = +1. Hence
{Pr/Qr} 1s recursively defined by the equalions
Pa=1, Py=DXy, Pi=Pi_\+ P
1 0 0 k k1ML k-2 for]_Sk<n+1, (8)
Q1=0, Q=1 Qr=CQr1d+ Qr2
and  QiPry — QeaPr = (—1)*  for0<k<n+ 1L 9)

Proof: As we have just seen, all the assertions of the theorem are
true when k& = 1, and (9) holds for & = 0. Suppose the assertions
true for some & < n + 1, and for all indices smaller than this k. We
wish to determine Pry; and Qg1 by solving (6x44).

If n is finite and kL 4+ 1 =n 41, then zp — [x1] = 21 — A&
= 0. Reversing the argument that led to (6;), this means that
Qrx — P = 0, or that z = P,/Q,, and the sequence {P./Q:} termi-
nates with P,/Q,. Thus the entire sequence of best approximations
has already been determined when k = n, so that we need only con-
sider the case k < n.

If k& < n, we must solve
Qr— - ..
<1; ejA—{ ——— )i positiveand minimal. (6x41)

l“(”%) Qs

From the induction hypothesis and the definition of z;,;, we have
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— i - g1 = — D1
A Qs — Pe Qe—t)e + Qug)x — (Pr—the + Pros)
Q1 1
P = = =z > 1
P N P T s
Simee — Q- /Qx < 0, the solution of (Bxys) 18 clearly
A= Megr = [rapal, =+1,

whence  Quyr = Qehipr + Qity Py = Piden + Py
Moreuver,
Qe1Pr ~ Pt = Qe + Q)P — Qu(Pdnst + Pat)
=~ (@Penr ~ QaPy) = ()",
by the mnduction hypothesis, and the proof 13 complete
To see how Theorem 9-1 solves the problem of finding the best
approximations to z, take # = /2 Then X = [V2] = 1 and

1
= = V41, M =[VZ+1 =2,
71 + = (V2+1]

B N TR T WO (v, S0 JUPY

and an general, 7, = V2 -+ 1and 2y = 2, fork > 1 Hence
Pa=1 Py=1 Pi=2P,+P,
so that (P} = 1,1,3,7,17, , and
Q=0 Q=1 Q=201+ 0
s0 that {@} = 0,1, 2, 5, 12,
Thus the best approximations to V2 are
R
‘2’512’
Of course, nat every x will give & constant sequence of N's, as
happens with V2 In general, while arbitranly many A's can be

determmed, no expliit (1e, nonrecursive) formula for the entire
sequence can be given
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Tueorem 9-2. If {z}, (A}, {Pel, and {Qi} are determined as in
Theorem 9-1, then the following relations hold:

_ Pea@e+ P

o — ’ <.
v Qr—12r + Qr—2 lsh<ntld (10)
1
z=2 + 1 ’ I1<k<n4+1, (1)
A
1+>\2+
: 1
+ 1
Apy +—
z
P 1
Pe 5, + ) 0<k<n+1 (12)
O M+ .
T+
: 1
7
Xk_1+5\;

Proof: From (7) and the definition of the o’s, we obtain
_ Qr2z — Pr_

Qrax — Pr,
which yields (10). The definition of {2z} and {X:} gives

X = )

1
z =)\0+"“')
T
1
zy =M+ —> (13)
L

1

Tp—g = Ap1 + ot
%

and if we successively eliminate Ty, %2 ..., 51, equation (11)
results. To obtain (12), consider the equations (13) with z; as an
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independent vanable which assumes values greater than 1, with
fixed Ag Ay, »Ae—1  Then 219 a function of zx, given more briefly
by (11} Bmce Pey, Pig Qeo1, and Qo depend only on
Ao > A1, (10) and (11) are dufferent expressions for the same
functional relation  If1n (10) 2z 1s given the value My thenz = P/Qy,
and substituting these values i (11) mives (12)

PROBLEMS

1 Carry through the procedure described 1 this scction to find the first
few best approximations to

2 Find all the best approximations to 339/62

3 Show thataf z = $(1 + V/5), then each A, 1 1

9-2 The rational case  We now suppose that z 1s rational If z1s
an mterior pomnt of Ro,(Py, @), we have the stniet mequality
[Qz — Pi] < Q12 — Pialy, or e — x| <1 It may happen,
however, that for some r/s with § > Q,_,, z 13 the common end pomt
of the abutting ntervals R,(Ps_1, Qr—1) and R,(r, 5), while z 1s an
wterior pont of B, ;(Pis, Qe—1) In this case, 1t 1s 5 matter of
choice whether r/s 15 to be included among the best approximations
to x, 1t has not been included up to now, since we have required the
strict mequality Ay — @] <1 Fortunately, this ambigwity occurs
only once for each z, for we know from earlier caleulations that z 1s
the mediant, of Pe_y/Qs; and r/s

Poatr
T =

14

[ an
80 that z 15 the first rational number to appear between P, |/Q,_; and
7/s 1n the sequences F, Fuqy, Hence k — =, and 1f r/s 15 to be

ncluded among the best approximations, and if we put r/s = P,/Q,
then Poy1/Quy1 =z  Companng equations (8) and (14), we see
that Ayq = 1, and by (12),

2=+ —

A+
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If r/s is not included, then « = P,/Q, and

1
x—?\0+)\1+
' 1
+
M+ 1)
To illustrate, take x = %, Then
i 1 3 . 1 9
= = - = o
Ti-@ 2 T E @

and we have

2 1 Py, 0 Py 1 Py, 2
3= 0T o 1’ , 1 . 3
But we could also write
2 1
3= 0+ 1’
14—

with — ==y — = -—= =
Q 1 G 1 Q2
In this case, 2 is the right end point of Ry (1, 2) and the left end point
of Ry(1,1); with the normal procedure, 3 would not be included
among the best approximations to 2.
An expression

1
1

P, 0 P 1 P, 1 Py 2
2

1

ag + (15)

01+a2+
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18 ealled a finule regular continued frackon, 1t 13 fimte because there are
only fimitely many a’s, and regular because the a’s are mtegers
aj, @ are positive, and the numeratorsareall +1 We shall deal
only with regular continued fractionsn this book  For typographical
stmphieity, we write

1 1 1
— — 16]
tatat a. e
1 place of (15} The numbers
o P 1 1
O o - P2 g,
[ cor [ %+'11, 4 +ﬂ1+az

are called the convergents of the continued fraction (16) If (16} has
the value z, we can put

L 1 1
z=a =
* Ty + aat o
where
7/ = a4 »or m =t
e+ n et
fork=1,2, ,n Sicen > 1, wehave
1 1
5= — a = [z],
z =z}
1
. ’
. = s = &'}
2 PRam {2/}

Thus the sequence {x} 13 1dentical with the sequence {z;} defined
Theorem 9-1 and {a;} 18 therefore 1dentical with {A;} Hence we
have the following theorem

TrEoREM 9-3  The convergents (possibly excepting po/go} of any
Jimate regular continued frachion are the best approzsmations fo the
value of the continued fraction Every rational number can be ex-
panded wnto a finste regular continued fraction and this expansion 13
wngue, except for the ranatzon indicated by the wdentity

1 1 1

1
°+ax+ ;—ao+al+ @InEL a, > 1
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Moreover, the identities

(8) Po = @0, Pk = Pr—1@x + Prs,
() g0 =1, gx = gr18r + Gi—,
() qepr—1 — qraapr = (—1)%,

@ z = D1k - Pr—s

qr—1%k + Qr—2
holdfork = 1,2,...7n,¢f wedefinep_; = 1, ¢_; = 0, and
1 1
== e — n > 1.
x ap + a - a, ’ an 2

It might be worth mentioning that the continued fraction expansion
of = p/q can be deduced immediately from the Euclidean algorithm
as applied to ¢ and b. For if

a = bag + 1o,
b = Tol1 + 1,

T = r1ag + 7y,

The3d = Tn—9ln_y + Tn_1,

Th—2 = Tn-10n,

a To 1
then - =aq —=aqa S
p = %0 + b o+ b/re
b r
— =g+ =a
To To To/T1
7o T2 1
—=ag+ — =az+
T T3 T1/T2
T T 1
2 3_'an—-l'{" - 1=an—-1+ H
Tn—2 Tn—2 Tn—g/Tn-1
Tn—2
= an’
Tn-1
so that 1 1 1

s 88—
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PROBLEMS

1 Prove that the comvergents pi/gs are n reduced form, 1e, that
(s ge) =1

2 Ifz = a/b where {a 8) = 1, and

1 1

e
@t ot 6.
then p. = a ¢. =% Use this and an :dentity of Theorem 9-3 to find &
solution of the inear Diophantine equation ez + by = ¢  In particular
find & general solution of 247z 4 77y = 31

3 Show that fork <n,

z=as+

{3 1 1 1
2 ==
a YT ata
9-3 The irrational case. Now consider the case that z 15 an
wrational number #  The sequences {2i}, [Ar}, and {P/Q:} are now
nfinite, and we write
1 1
A F e ——
AR ey
Thos equation must be understood as an abbreviation for the equation

an

1 1 P,
=lm{}N+— =)=hmZ
eimorsls )-imE
the convergents P,/Q, play a role here analogous to that of the partiat
sums of an finite series
Conversely, if we start with an arbitrary infinite regular continued

fraction
1

1
a, — 19
ot T ar a9

we can show that the convergents

Do 23 1 Pz 1

— =a Z=e+t=r —=at+t——,

o @ a @ et
always converge to an irrational number £ For take n > 2 and put

P_Pa 1 1

4‘1 n @+ as
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Then by Theorem 9-1, the numbers ag, a3, ..., @,—z are uniquely
determined by p/q, and the convergents of p/g, which are also con-
vergents of (19), satisfy the usual recursion relations:

P =1, Po = Qg, Pr = Dr—1ax -+ Dr—g, 20)
g3 =0, go =1, gk = Qr—10k 1+ Qr—g,

fork=1,2,...,n— 2. Moreover,
GPr—1 — Q1Pk = @10k + Qe—2)Pr1 — Q-1 (Pr—10r + Pr_2)
= — (qr—1Pk—2 — Qr—2Pr-1) = ***
= (_1)k(902’—1 — ¢—170),
so that
@GPt ~ Qeapr = (—1)F (21)

for k=0,1,...,n — 2. Since n is arbitrary, the relations (20)
and (21) hold forall k > 1. By (21),

QPr—2 — Qr—2Pr = (Qr—0x + Qr—2)Pr—2 — Q—2(Pr—1ax + Pr—2)
= ar(gr—1Pk—2 — Qr—2Pk—1)
= (—1)"g. (22)

From (22), we see that

D2r—2 < D2k D2k—1 > Pokt1

q2k—2 g2k J2k—1 q2k41
so that
Po P2 Pi_... DA Ps P,
qo0 gz g4 a1 q3 g5
By (21),
Pak < Pakt1
Qo gok41
so that
D2k < D21
Q2r gat41

for every I > k. Hence

Po P2 _Ps_ . Ps_Ps_P1
qo g2 94 as qs q1
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so that the sequences {par/gzr} and {Ppors1/gers1}, being monotome
and bounded, are convergent But (21) can be rewritten 1n the form

P _p (CDE

Q1 @ B
and since gz~ © ask-»> o we see that
Im (@z - sz+|) -0,
ko \G2k  Q2k+1
and consequently lim pe/gx exists  Call this Limut §, and put

1 1 1
Prote et
It follows, just as 1 the rational case, that
1 1
b RthRem
and a=[E a=I[k) ,

so that the convergents py/gi of (19) are the best approxumations
Py/Q:to & From this we deduce the following assertions
TueoreM 9—4  Every wnfinile regular continued fraction converges
to an wrrational number, the best approzimations to which are afforded
by the convergents of the continued fraction  Every wrrational number
can be expanded tnlo an infimte reqular continued frachon, and this
expansion 1s unigue  Moreover, the follounng identitres hold, +f
1
t=ag+-——
T+
P1 =1, Pr =00, Pr=Pe10k+ Pe-s
1=0 q=1 q=gq 1%+ g
@it — qoape = (—DF, k=012 (29
GPh—2 — GrooPi = (—1)* oy, k=123, (25
£ 4 ez 1 1 1
g DL Pt where =ag+—— nd
aab o F=atlT an+h
k=128, (26)

k=123 , (23
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The numbers ay are called the partial quolients, and the &, the
complete quotients, in the expansion.

Once the continued fraction expansion of ¢ is known, the successive
convergents can be computed very simply. For example, let & = 7.
Then

V=24 (V7T-2), @ =2, &= (V7-2)7,
-1 7 — 1\
1 =\/"7+2=1+\/7 a=1 g = 4 ) ,
V7 —2 3 3 3
3 V141 1+3[z_:_1_’a2=1, =x/" )
Vio1 2 2
ey -1
2 =\/7+1_1+\/7—2 G =1, =<\/’7'—2>
AT —1 3
=VT+2=44+7-2), as =4, &= (VT7T-2).
\/“__.
Since & = &, also & = &, & = &, ..., so (&) (and therefore also

{ar}) is periodic. Thus we have the periodic expansion

1 1 1 1 1 1 1 1
Vi TR TFIFIFIFIRES

Using the relations (23), we construct the following table:

El~-110{1123] 4] 5] 6

a 2111141 4¢ 1¢( 1

pr| 1 1235183714582

g | 0 {1]112]3]14]17]31

Here the element 37 = p,, for example, is determined by multiplying
a4 = 4 by p3 = 8 and adding p; = 5. Thus the best approximations
to V7 are 3, §, £ 2145 ...
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ProBLEWS
1 It can be venfied, using a ly good decimal to
, that the b of the d fraction formis
rogi L L
TFF I+

Find the first four best approximations to =
2 Show that V/13 has #n expansion which 1s eventually penodic, and
find the first few convergents

9-4 Quadratic wrationahties. The problem of finding the best
approximations to a real number z has thus been completely solved
1n terms of the regular continued fraction expansion of Of course,
unless z 1s of & very special form, 1t may be impossible to give the
complete expansion of z, just as one cannot give the rule of formation
for the digits oceurring in the decimal expanston of +  But if a decr-
mal approximation of x 1s known, a correspending part of the con-
tinued fraction expansion of z can be determined quite easily For
example, from the senes expansion for e, one can easily show that

27182 < e < 27183
By a simple computation, we find that
i1 1 1 1 1 1 1 1 11

2N =2 o e e =
8 +1+2+1+1+4+1+1+1+3+1+9'

e S N e TR T

sothat e=24—-- L 1 1 1 1

(Actually, 1t 15 known that the sequence of partial quotients 1s
2 1,21 1,41 1,61, ,  Lonl, }
There 15, however, one simple case 1n which the complete expansion
can be determined that m which the partial quotients ag, a;, a;,
constitute a sequence which 1s eventually periodie  Consider for
example the contmued fraction
1 1 1 1 1

o
¢ +3+1+2+1+2+ ’
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where ag, = 1 and agny = 2 for n > 1. If & is related to £ as in
(26), we have

1 1 1 1 1
=1 ~—-———————--.-=1 ——
E=lterirey Yotk
so that
1 & 3k 4+ 1
=l ——=1 ,
& R T Rk
+__
%o
2% — 2, — 1 =0,
‘= -1+ V3
2 2
(The plus sign is chosen since & > 0.) Hence
4v3-2 17-—-3
E=1+ 1 = V3 1 3.
34 L 3v3 -1 13
V3 -1
2

Conversely, if we start with a quadratic irrationality—say £ = 1 +
V—we get

ao = [1 + V6] = 3,
fo L _Moye _[\/’6-1-2]__2
Y vG-2  z a7 4T

1 2
£ = =6 +2, = 4,
? v%+2_2 N + @2

2

1
53 = ‘\/6 _9 = Ely
so that

VEt+1=34-> L L 1

2+ 442+ 4+

We can now show that these are not isolated phenomena.



178 RATIONAL APPROXIMATIONS TG REAL NUMBERS  {cmar §

TureoreM 9-5 Every Iy periodic regular Sraction
converges o & quads Lty, and every quady wration-
ality has a regular d fraction which 1g

periodie

Proof ‘The first part 13 quite sumple  Suppose that the first penod
begins with a,, and let the length of the persod be &, so that
appn = apfork > n Put

t=0+—— and  Hi=apb .-,

ay + T Q1 +
s0 that figa = & for k> » By this and equation (26),
_Doabn t Pre2 | Pagiabs + Puyrz ,
[ T R )
50 that £, satisfies a quadratic equation with integral coefficients
Since £, 15 obviously not rational, 1t 13 a quadratic wrrationahity By
(26) agamn, the same 1s true of § itself, since 1f

At + Bt +C =0,
then

A(=gast + Pac2)® + B(—goak + Paz) otk — Paa)
+ C(gnst — pay)? = 0

and this 19 & quadratic equation m §
The proof of the converse involves a little more computation
Suppose that
A8+ Bt+C =0,

where 4, B, and C are ntegers and £ 1s wrational  Then equation
{20} gives

Apeabe + Pra)® + Bk + Pro2)(@rorbe + qu2)
+ Clgts + @) =0,
or A® + B + G = 0,
where the mntegers Ay, Bx, and Cy are given by the equations
Ax = Apf1 + Bprages + gy,
By = 245 1pe-2 + B(Pa1tig + Pr—sear) + 200 rgs_s,
Cr = AP 2+ Bpiage 2 + Cgloy
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If f(z) = Az® + Bz + C, then
Ay = giaf (——-pk"‘>r Cr = giof (ﬂlz) .
qr—1 Qr—2
Using Taylor’s theorem, we have
f Pr1 7 Dr—1 2
AL—QL—llf(E)"i-.f(E) ““‘“'—E + f €3] o ~ &},
since /'’ (z) is identically zero. Now (& =0, and
_ Pe _ Peafe + Pr2  Pr—r = Ti1Pi2 — Gk—2Pk~1
Q1 Gabk G2 B Q1 (@rardr + Gr2)
( l)k—-l
(IL—I (gr—16r + (Iz.p2)
since £, > 1, it is certainly true that

27)

£~ Pr-1 < ._2_1__ .
Qh—1 Qr—1
Hence
lAd < 17" (B + I f)l g
and similarly
L 63! "(E)}
[C < 1/ B + 5= 22

so that |Ax| and |Cr| remain bounded as k — .

To see that |By| is also bounded, we use the fact that all the quan-
tities B2 — 44,C, have the common value B2 — 44C = D. (This
can be proved by a straightforward but tedious computation or, if
one is acquainted with the theory of linear transformations, by noting
that the expression 422 + Biz'y’ + Ciy'? is obtained from Az® +
Bzy + Cy* by the unimodular substitution

z = praz’ + pr_sy’,
Yy = Qk—lx’ + Qk—2y,y

and that two such forms have the same discriminant.) Since 4 and
Cx, are bounded and D is fixed,

Bk2 =D -+ 4Akck
must be bounded also.
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Thus, there 15 a constant M such that
e <M, |Bi<M, |Gl<M
for all & Since there are fewer than (2M + 1)° tniples of integers

numencally smaller than M, there must be three indices, say ny, ng,
and ng, which give the same triple

Ap=dsy= Ay, By =By=Buy  Coy=Coy=Ce,
Snce the equation A,y2? + Buz + Cay = 0 has only two roots, two
of the numbers £y, £ns, £a; must be equal; with proper namung, they
can be taken to be £, and f,, whereny <n; If np — ny = h, then

Enth = fny 804
1

Enginr — [Enpial
1 1
Supthil — [En‘+}.+1] Enpit ~ [Enp]

Enpthar =

P [N

Enpphiz = = a3y

and 1o general, fx44 = & for £ > ny  Thus the £'s are eventually
periodic 8 h gy, 18 d d excl by the d
&, the same 18 true of the a’s, and the proof 15 complete

The relation (27) 1s of course vahd for general £, although 1t was
used above only when £ 13 2 quadratic urrationality It provides a
proof of the following assertions

TasoreM 9-6  If pi/qx 15 a convergent of the continued frachon
expansion of §, then

-2 — =D (28}
@ aloden + )
1 P 1
A fortiors —_ < l -2
Jorkoms oA Orr
e 1
and -l = 09
¢ al o’ @)
As a partial converse, we have
T 07 _B L,
'HEOREM Iy £ ! b3 (30)

then p/gisa of the d fraction of ¢
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Proof : If p/qis adjacent tor/sin Fy, then the end point of B,(p, q)
lying between p/q and r/s is the mediant

p+r,
q-+s
and lw—gl r-r ! —1—
g+s ¢ glg + ) q(q+8) 2¢*
Hence, if (30) holds, either
P+t 7)+1’
q<s<g+ < or - q+ <g<q

and ¥ € R,(p, q), so that p/q is a best approximation, and therefore a
convergent, to &.

PROBLEMS

1. Below is an outline of a proof that the expansion of v/d (d a positive
nonsquare integer) is periodic after ap. Fillin all details, (fe =r + s\/ﬁ,
where r and s are rational, then@ = r — s\/c—i.)

Put £ = Vd + [\/E]. Then —1 < & < 0, and from the equation

& = ar + EHA

it follows that —1 < & < 0 for &> 1. This in turn shows that o =
[~1/E41]. Now suppose that the periodicity of {&] begins when k = n,
and that the period is of length %, so that £, = £,.5. It follows that
@n-1 = @nyp_1, and hence that £,y = E,p4-1, 50 that {£]) is periodic from
the beginning.
. 2. It is a consequence of Theorem 8-1 that if ¢ is irrational, then to each
positive integer ¢ there corresponds at least one pair of integers z, ¥ such
that

1
< = 1<z <,

iz
Show that this becomes false, for any irrational £ and infinitely many f,
if the second inequality above is replaced by 1 <z < /2. [Hint: Take
! = g + gry1, and use Theorems 9-7 and 9-6.]

9-5 Application to Pell’s equation

TrEOREM 9-8. If N and d are snlegers with d > 0 and |N| < V/d,
and d is not a square, then all positive solutions of the Pell equation

22 —dy? = N (31)
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are such thal z/y s ¢ of the d Jraclion

of Vi .

Proof Suppose that z +yV/d 15 a positive solution of (31)
Then, f N 18 posmve,

O<rmyVie DL A S S
y +yx/fi z+y\ﬂi Fy oy I
Vi yVd
Since z/y > Vd, we have
«/&—— <§2 32)

If N 18 negative, we deduce from the equation

the relations

1 ¥ 1
Viel <22 i
Now if
1
Vi =g+ ot
then
1 1

7 + a@t+a+
so that the convergents of the continued fraction expansion of 1/vVd
are 0/1 and the Is of the g of the d frac-
tion expansion of Vd  Usmg this, the mequalities (32) and (33),
and Theorem 9-7, we have the result

This theorem provides zn effective method of deterrmuming all
mtegers N, numerically smaller than +/d, for which equation (31)
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is solvable, for it happens that the sequence {px® — dg;?} is eventually
periodic, and consequently only finitely many values of k need to be
examined. To see this, put & = vd and
Pe—1Ex + Pr2
Vi = gr—1Er + qi—2 . (34)
Solving for £ and rationalizing the denominator, we can write
_ \/C? + Tk ,

Sk

&
where 7. and s are rational numbers. Substituting this back into
(34), and replacing k by k 4 1 throughout, we have

3= pk(\/§ + Trq1) + Pr_18t4 ,
g (Vd + 1rp1) + @GS

or
(gsre1 + Gr—1Srgr — ’Pk)\/_ — (Pr1Si41 + prrigr — qid) = 0.
The rational and irrational parts must separately be zero, so
qirre1 + Qe—1Sk41 = D, DTkl + Pr_1Skp1 = qrd.
The determinant of this system is gxpr_1 — @r—ypr = (—1)*, so that
e = (= 1)*(pepra — Grgr—rd),
Spp1 = (“1)k(!]t:2d - ).

Now the numbers 71 and s; are uniquely determined by %; since
{&:) is eventually periodic, the same is true of {s;}, and the eventual
periodicity of {p® — dg,?} follows from the second equation of (35).

The discussion of Pell’s equation with N = =:1, in Chapter 8, had
the serious drawback that no effective method was given for finding
the fundamental solution, nor even of deciding when one exists for
N = —1. The results obtained above entirely clarify these points:
the first solution encountered, being the smallest, is the fundamental
solution, and the equation z® — dy® = —1 is solvable if and only if a
solution exists among the convergents to V/d up to the end of the
second period. (For {s:} becomes periodic at the same point as
{£}, and {(—1)*"2s;} has period at most twice that of {s}.) It can
be shown by the method sketched in Problem 4, below. that s, =1
for the first time at the end of the first period, so that the preceding

(35)
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convergent 13 the fundamental solution of one of the equa!\ons , 1f
{or this convergent pi® — dq,, = 1, then the equation z* — dy? =

15 unsolyable, while if p,® ~ dgi® = ~1, the convergents precedmg
ends of periods are alternately solutions furN =—land¥N =1
PROBLEMS

1 For what N with {N] < V/7 1s the equation 2 — Ty = N solvable?

2 Show that the numbers 7, and ¢ defined i this section are postive
integers [Hint Use equation (28) ]

3 Fid the fundamental solution of 32 — 95y = 1, of 27 — 74y = 1

4 (=) Using Problem 1, Section 9-4, show that f the length of the pertod
in the expansion of V/d 1s A, then 8 == 1, and hence that

Pra® = dgam® = (=1

Thus £2 — dy? = —11s solvable 1f & 18 0dd

(b} Using the fact that the numbers £, £, , £y are distanct, show
that %> 11f 1 S k<A —1 Deduce that the equation 27 — dy? = —I
13 solvable only 1f h1s odd

9-6 Equivalence of numbers. Because each element of the
sequence {£} depends only on the preceding one, and because the
defining rule

1
&=+ wn

18 the same for all k > 1, 1t 15 clear that if

[ 1
E#a“+a|+ et T ar
then
b= +am+

If we are mterested 1n the possibility of finding mfinitely many solus
tions of the mequalty
|

equation (28) shows that we need only examine the numbers £, with
large k  For this reason, we shall term two wrational numbers &
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and £ equivalent if, for some j and k, £'; = &. Then #;1m = beym
for m > 0, and by the above remark, this means that if

1 1 1 1

£ a°+a1+ ar—y + ar + arpy +
then
1 1 1
£=b + + bjg + @+ @+
so that
Pk.-lfk + Pk—z ’ p:—lfk -+ p:——2
T gk (Jk-2  Qhabr + gie

TrREOREM 9-9. Two irrational numbers & and &' are equivalent,

in the sense that their continued fraction expansions are identical

from some points on, if and only if there are integers A, B, C, and
D such that

’ AE -+ B

T Ct+D’

Proof: Eliminating & from the equations preceding the theorem
gives

where AD — BC = -1, (36)

— G2t + pr2 _ "'q;—zf -+ P;—z
Gr—18 — Pr—1 gi1t — Pia

or
£ = Ag 4+ B
CY + D’
where
A =pragis — Progi, B = prapia — Pr1Di-z,
C= q;.-_lqﬁ-_z - Qk—zqfi—ly D= %-223;'-1 - Qk—xpg'—z-

A simple ealculation shows that
AD — BC = (pi1Gi—2 ~ Di20j—1) (Pr1Giz ~ Prsem) =

To complete the proof, suppose that equation (36) holds. By
replacing 4, B, C, and D by their negatives if necessary, we may
suppose also that C£ -+ D > 0. Substituting the value of ¢ from
equation (26) into (36) gives

7 afk+b

ok + ot +d’ (87)
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where
a=Ap + By, b= Aprs+ Bgrs,

¢=Cpr+ Dy, d=Cpez+ Dpa
and
ad ~ be = (AD — BCY{(pr1gr—2 — Pr—2ge1) = 1

By the mequality (29),

Bp 3,
Pt = Gt + 220 pa =gt
(8] Bz

where
Pl <1, 1o <1
Hence
[« (%)
¢=(CE+Digs + =22, d = (CE+ Dlga -+
Qo1 Qr—2

Sinee C¢ + D, g1, and ge_p are positive, and since g > qe2

and gz — © with k, we have ¢ > d > 0 for k sufficiently large But

by Theorem 8-14, this means that a/c and b/d are adjacent m F,,

and from (37) and the fact that £ > 1, 1t 13 seen that £’ lies between

a/cand b/d, and 1s closer to a/c than 1s the mediant (@ + b)/(c + &)

Tt follows that ¢’ € R, (b, @) and ¢ € R.(a, ¢}, so that b/d and a/c are
£ of the d fraction of ¢

a = P;—l, b= P;—zy c= Q;—h d= Q;,-»z

But from

¢ - Prb+Pls _ Pt + 90
bt g2 Ol + G2
1t follows that & = £, as was to be proved
In the course of the proof, the following useful fact emerged

TaeoreM 9-10 If ¢, b, ¢, and d are mntegers, and

af’ +b
E=cE'+dY ed = be = =1, ¥>1, ¢>d>0
then b/d and a/c are g of the d fraction

expansion of &, and &' 13 the corresponding complele quotrent for
sutable k,

a=p, b=pa c=ga, d=ga =4
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We shall use the symbol ‘22" to designate equivalence in the regular
continued fraction sense. The notion of equivalence, together with
equation (28), can be used to gain new insight concerning the Markov
constant 31 (£), which was defined in Section 8—4 as the upper limit
of those numbers A such that the inequality

P 1
P e
has infinitely many solutions p,q. From (28), it is clear that
|2 (¢ — px/gx)| is approximately inversely proportional to &, so
that M (£) will probably have its smallest value for those £ for which
ar = 1 for all large . Now if

g-_-l.;.r:*__.l.:...,
then g=1+lg, g=1+2\/5.

These remarks lead one to expect that the first part of the following
theorem might be true.

TrEorEM 9-11. If ¢, then M) = M@E). If i
(1 + V/5)/2, then M () = V5. I f E1s irrational and not eguivalent
to (1+ V5)/2, then M(t) > V8. If £ V2, then M(£) = /8.

If & is not equivalent to either (1 + V/5)/2 or \/5, and s irrational,
then M (£) > 17/6.

Proof: By (28), M(¢) = lim sup <£k+1 4 gii) .
k— e ax
Now £ =gq 4 !
k41 = Grg1 Gtz + ’
and
r—1 _ qr—1 _ 1 1 1 _
9k Qr—a0r + gro 4 B2 + oy + 28
gr—1 Qr—2
11 1 1 1
E— - @ 9 p—v .. ——— )
ax - .
r+ ar—1 4+ a2+(10 ar + ay
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s0 that

M@= hm Wing {(aﬁ- ak_I|+ 1111) ( k+‘+¢ a2t )} @

If ¢ 22§ then §,’ = &xand a,” = ax for all suffiiently large y and k
for which 7 ~ k has a switable fixed value & If the convergents of ¢
are p,'/g,’, then for such 7 and & the continued fraction expansions of
gx-1/gx 2nd ¢}_y/g;’ have the same partial quotients at the begmmng,
and the interval of agreement can be made arbitrarily long by choos-
ng 7 and k sufficiently large Suppose that they agree in the first
1+ 1 partial quotients, that r,/s,(¢ = 0,1, , I} are the common
convergents, and that

G _metbre g wxm +ria
o saen -k sig g s tae

Then using the fact that (a) = (/] 2 1, we have
1 _ G
] 4

ez ~ |
= o+ sg) (el + Sl—-z) st

50 that
/ ‘
Jim KE . @) _ (E/ " QL‘)} -l (%1 ‘IL) -
L qx a5 ke \ Gk 9
1-k=h s—k=h

and so M) = M)
To prove the second assertion of Theorem 9-11, we need only
notce that

1+ 5 1 1 1 T
M( z\f)“l’.m.{(”ﬁ )+ Dl
thiy !

& terms

V5,

=1+JE+_L__
2 a+ vz~

by (38}

To prove the third part, we may suppose that a4, > 2 forinfimtely
many mdices £ If aryy > 3 for infimtely many k, 1t 13 clear that
Mt} >3 Since VB < 3, we need only consider those & s for which
az1s either 1 or 2 for all large k. If there are fimtely many 1’s and
2, there are infinitely many values of k such that ap = 1 ag41 = 2
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But then, since the value of a continued fraction is always at least
equal to its convergent with index 2,

1 1 1 7
Gry1 T e 22224 —— =
ak+2+ 1 1 3
ak+2+a—-k+3 2 1
and
1 1 _1_2 1 > 1 —_-l,
ar 4+ ap—; + ay 14 1 141 2
ap—1
so that

o)

ME)>F+3=%-=2833...>~
On the other hand, if a; = 2 for all large %, then

1 1 —
£=1+5—_;"2~_’-:“'-—\/2,
and
1 1 1 1
M) = 11 —_— e e =
© il“l{(2+2+ >+(2+2+ 2>}
[N S —
k terms

= (VZ+1)+ (VZ2-1) = VB

To clarify the significance of Theorem 9-11, we make use of the
concept of countability, introduced by G. Cantor. Let S be an
arbitrary infinite set. If it is possible to establish a one-to-one cor-
respondence between the elements of S and the set of positive integers,
then S is said to be countable. Another formulation of this require-
ment is that it should be possible to arrange the elements of S in a
sequence having a first element, second element, and so on, in such a
way that each element of S occurs only finitely far out in the sequence.
The integers are countable, since every integer occurs in the sequence

0,1,—-1,2, ~2,...,n, —n,.

The rational numbers between 0 and 1 are also countable, although

they cannot be arranged by size. A suitable sequence is given by
112131234

2’378'4’4°5'5’5’5"° 777
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n which the reduced fractions with denommators 2 are hsted first,
then those with denomunators 3, etc  On the other hand, the real
numbers between 0 and 1 are not countable (1€, the set of such
numbers 1s uncountable) For each such number 1s umquely repre-
sented by an infinite decimal (which may consist exclusively of 0's
from some pomt on, but not of 9’s), and conversely Suppose that
the set could be arranged in a sequence, say a1, ag, , and let
the decimal expansions be

ar =0ansi03
ay = 0821022823
ag = 0ag0383

where the a,; are digits  Let b = 0 bydobs be the real number

to the foll rule fory=1,2, N
b = {0 e, #0
Tt afey=0

Then since b, # a,,, 1t 13 clear that b # a,, and since this 1s true for
every 7, b1s not in the sequence ay, 93,  , 50 that the sequence does
not contain every real number 1n the interval 0 <z < 1

If 1t can be shown that one set 13 countable, while another 1s not,
then there must be some element of the second set which 1s not 1 the
first Moreover, every subset of & countable set 1s countable

It 18 relevant to our present purpose to note that the quadruples
of mtegers (4, B, C, D) such that |[AD — BC| = | are countable
For without the restriction, we have the larger set of all quadruples
of integers, and these can be arranged m a sequence by first writing
(0, 0, 0, 0), then all quadruples whose elements ar¢ 0 or 1, then
those whose elements are 0, 1 or =2, etc It follows from Theorem
9-9 that the set of numbers equivalent to a fixed number 13 countable,
and 1t follows easily from this that the set of numbers equivalent to
any of a fixed countable set of numbers 1s 1tself countable

Theorem 9-11 contams the first two of an infinite sequence of
assertions about the values less than 3 assumed by M(¢) Markov
showed that there are only countably many such values, that their
sole himut point 1s 3, and that each such value corresponds precisely
to the set of numbers equivalent to a certain quadratic wrrationality
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There is no really simple proof known. For later purposes, we show
that these results cannot be extended to values M (£) > 3.

TueoreM 9-12. There are uncouniably many numbers & such
that M (¢) = 3.

Proof: Let 7y, 72, ... be a strictly increasing sequence of positive
integers, and let

1+ 1424241+  14H2+2+1+
—_—
Ty Ta (39)

where there are r; partial quotients I, then two 2’s, then r, 1’s, then
two 2's, then r3 1’s, etec. Thus two blocks consisting entirely of 1’s
are always separated by two 2’s, and the blocks of 1’s become longer
as we move out in the sequence. Let

8 L) .
Br = Ek41 + p (ak+1+ak+2+ + a4 ap_y ax

If we choose % so that axy = 1, then clearly &1 < 2, gra/qr < 1,
and B < 3. If k runs through a sequence of indices such that azp; =
ary2 = 2, then

1 1 1 1 1 1
= {2 = ... —_— = ...2
B <+2+1+1+ >+<L+1+ 1)
1 +\/5—1=
24 (v5—1)/2 2

while if & runs through a sequence of indices for which a;, = a4y = 2,
then

— 24

3,

1 1 1 1 1 1
c={2 4= - .., ..z
B (+1+1+ >+Q+1+1+ 1)
1 1
+ + =3
a+ V52 24 (V5-1)/2

Hence M (%) = lim sup B; = 3.
T.o complete the proof, it is required to show that the set of in-
equivalent £'s defined as in (39) is not countable. Now £ and ¢’ are

—2
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equivalent if and only if the sequences 71, r2, .. and r//, )/, ..
associated with them are identical from some pomnts on, so that we
can transfer the notion of equivalence from the numbers £ and ¢’ to
the sequences {ry} and {ry'} Suppose that the mequivalent se-
quences among all the increasing sequences of positive mtegers can
themselves be arranged 1n a sequence, say By, Rz, , where R,
stands for the sequence ry, a2, , with ry <7y <. With
proper neming we can suppose that R; 13 the sequence 1, 2, 3, of
all posittve integers m order  If 2 > 1, R, 13 not equivalent to Ry, and
there are therefore infimtely many positive integers not included m 1.

For 2> 1 let 8, = {su} be the sequence complementary to R,,
that 1s, the positive ntegers, ordered by size, which do not occur in Ry
Each §;1s an infinite sequence  Now define a sequence 7T as follows
Pick ¢y 1 Sz, and then successively choose &, 23, so that

4HeS,, < €S,
I+6<6CS G<ucs L<Gcs,
1+t <t 8, h<heS, H<BeS, <Hess

From this scheme 1t 15 t that 7' 15 an g of
ntegers, wfimtely many of which are contamed 1n §,, and therefore
not contained . Ry, for arbitrary k > 2 Hence T 15 certamly not
equivalent to any of Ry, R3, Since each element ¢, t, b, of
T which hes m §; exceeds 1ts predecessor in 7' by more than one,
715 also not equivalent to By  Hence 7 15 nat equivalent to any Ry,
contrary to the hypothes:s that the sequence { Ry} contains an element

to any of posttive tegers
PROBLEMS
1 Are the numbers v/5 and (1 +V/5)/2 equivalent? What about
V3and ( + V3)/2?

2 Show that if £ 13 irrational, then at least one of any two consecutive
to £ satisfies the

-2
1

<=
2¢*
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