Septobasidium aquilariae sp. nov. from Yunnan, China

Rui-Ling Ma1, Meng Gao1, Xiang-Lin Zhuang2, Chang-Lin Zhao1,2*

1Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, P.R. China
2College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China

Correspondence to: fungichanglinz@163.com

Abstract—A new fungal species, Septobasidium aquilariae, is proposed based on a combination of morphological features and molecular evidence. The species is characterized by an annual growth habit; a resupinate coriaceous basidiocarp with a cream to pale brown surface; a monomitic hyphal system with thick-walled generative hyphae bearing simple septa; reniform, hyaline, thin-walled, smooth basidiospores measuring 11–19 × 4–7.5 μm; and haustoria consisting of irregularly coiled hyphae. The fungus was found associated with Pseudolaccaspis sp. on Aquilaria sinensis. Sequences of internal transcribed spacer region (ITS) were analysed maximum likelihood, maximum parsimony, and Bayesian inference methods. The phylogenies strongly supported S. aquilariae in a monophyletic lineage (ML = 100%; MP = 100%; PP = 1) and grouped with “S. cokeri”.

Key words—felt fungus, Pucciniomycetes, Septobasidiaceae, Septobasidiales, taxonomy

Introduction

Septobasidium Pat. (Septobasidiaceae, Septobasidiales), erected by Patouillard (1892), is a large, cosmopolitan genus characterized by resupinate basidiocarps with a white to cream, yellowish brown or brown hymenophore, a monomitic hyphal system with simple septa, with or without probasidia, 2–4 celled cylindrical, curved, or straight basidia, basidiospores that are hyaline, thin-walled, smooth, and cylindrical or fusiform, and haustoria consisting

...
of coiled or spindle-shaped hyphae (Patouillard 1892, Couch 1929). About 300 species have been accepted in the genus worldwide (Patouillard 1892; Bresadola & Saccardo 1897; Burt 1916; Lloyd 1919; Couch 1929, 1935, 1938, 1946; Yamamoto 1956; Gómez & Henk 2004; Henk 2005; Lu & Guo 2009a,b, 2010a,b, 2011; Lu & al. 2010; Chen & Guo 2011, 2012; Li & Guo 2013, 2014).

Molecular systematics have played a powerful role in inferring phylogenies within fungal groups since the early 1990s (White & al. 1990, Binder & al. 2013, Dai & al. 2015, Choi & Kim 2017). However, molecular studies involving Septobasidium are rare (Henk & Vilgalys 2007, Zhao & al. 2017). One phylogenetic study of a single origin of insect symbiosis in the Pucciniomycetes suggested that there is little or no support for Septobasidium as a monophyletic group (Henk & Vilgalys 2007). Zhao & al. (2017) introduced a six-gene phylogenetic overview of Basidiomycota and allied phyla and confirmed that S. carestianum Bres. nested within the Septobasidiales and grouped with Helicobasidium mompa Nobuj. Tanaka and Thanatophyllum crocorum (Pers.) Nees.

During disease investigations on Aquilaria sinensis in southern China, a new Septobasidium taxon was found that could not be assigned to any described species. In this study, we expand samplings from previous studies to examine the taxonomy and ITS phylogeny of this new species within the Septobasidium.

Materials & methods

The specimens studied are deposited at the herbarium of Southwest Forestry University, Kunming, China (SWFC). Macromorphological descriptions are based on field notes. Colour terms follow Petersen (1996). Micromorphological data were obtained from dried specimens observed under a light microscope. Measurements are presented as: L = mean spore length, W = mean spore width, Q = range of L/W ratios, n = number of spores/number of specimens.

Genomic DNA was obtained from dried specimens using the EZNA HP Fungal DNA Kit, according to the manufacturer’s instructions with some modifications. A small piece of dried fungal specimen (about 30 mg) was ground to powder with liquid nitrogen. The powder was transferred to a 1.5 ml centrifuge tube, suspended in 0.4 ml of lysis buffer, and incubated in a 65 °C water bath for 60 min. After that, 0.4 ml phenol-chloroform (24:1) was added to each tube and the suspension was shaken vigorously. After centrifugation at 13,000 rpm for 5 min, 0.3 ml supernatant was transferred to a new tube and mixed with 0.45 ml binding buffer. The mixture was then transferred to an adsorbing column (AC) for centrifugation at 13,000 rpm for 0.5 min. Then, 0.5 ml inhibitor removal fluid was added in AC for a centrifugation at 12,000 rpm for 0.5 min. After washing twice with 0.5 ml washing buffer, the AC was transferred to a clean centrifuge tube,
Table 1. Species, specimens, and ITS sequences used in *Septobasidium* molecular analyses.

<table>
<thead>
<tr>
<th>Species</th>
<th>Sample</th>
<th>GenBank ITS</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Helicobasidium monpa</td>
<td>DAH h1</td>
<td>DQ241472</td>
<td>Henk & Vilgalys 2007</td>
</tr>
<tr>
<td>Paecmycob ferruginea</td>
<td>DAH pf1</td>
<td>DQ241473</td>
<td>Henk & Vilgalys 2007</td>
</tr>
<tr>
<td>Septobasidium alni</td>
<td>DAH FP3</td>
<td>DQ241441</td>
<td>Henk & Vilgalys 2007</td>
</tr>
<tr>
<td>S. aquilirae</td>
<td>CLZhao 6610</td>
<td>MK802139</td>
<td>Present study</td>
</tr>
<tr>
<td>S. arachnoideum</td>
<td>DAH 025</td>
<td>DQ241443</td>
<td>Henk & Vilgalys 2007</td>
</tr>
<tr>
<td>S. bogoriense</td>
<td>998434</td>
<td>HM209414</td>
<td>Unpublished</td>
</tr>
<tr>
<td>S. browssonetiae</td>
<td>998436</td>
<td>HM209416</td>
<td>Unpublished</td>
</tr>
<tr>
<td>S. burttii</td>
<td>DAH 062</td>
<td>DQ241444</td>
<td>Henk & Vilgalys 2007</td>
</tr>
<tr>
<td>S. carestianum</td>
<td>DJM 644</td>
<td>DQ241448</td>
<td>Henk & Vilgalys 2007</td>
</tr>
<tr>
<td>S. castaneum</td>
<td>DAH 052</td>
<td>DQ241447</td>
<td>Henk & Vilgalys 2007</td>
</tr>
<tr>
<td>S. cavarae</td>
<td>DJM FP1</td>
<td>DQ241445</td>
<td>Henk & Vilgalys 2007</td>
</tr>
<tr>
<td>"S. cokeri"</td>
<td>DAH 061</td>
<td>DQ241449</td>
<td>Henk & Vilgalys 2007</td>
</tr>
<tr>
<td>S. fumigatum</td>
<td>DAH 005</td>
<td>DQ241451</td>
<td>Henk & Vilgalys 2007</td>
</tr>
<tr>
<td>S. gomezii</td>
<td>DAH 031</td>
<td>DQ241462</td>
<td>Henk & Vilgalys 2007</td>
</tr>
<tr>
<td>S. grandisporum</td>
<td>DAH 065</td>
<td>DQ241453</td>
<td>Henk & Vilgalys 2007</td>
</tr>
<tr>
<td>S. hainanense</td>
<td>998437</td>
<td>HM209417</td>
<td>Unpublished</td>
</tr>
<tr>
<td>S. kamei</td>
<td>998432</td>
<td>HM209412</td>
<td>Unpublished</td>
</tr>
<tr>
<td>S. maesae</td>
<td>998433</td>
<td>HM209413</td>
<td>Unpublished</td>
</tr>
<tr>
<td>S. marianiae</td>
<td>DAH 283b</td>
<td>DQ241456</td>
<td>Henk & Vilgalys 2007</td>
</tr>
<tr>
<td>S. michelianum</td>
<td>DAH FP5</td>
<td>DQ241457</td>
<td>Henk & Vilgalys 2007</td>
</tr>
<tr>
<td>S. pallidum</td>
<td>998435</td>
<td>HM209415</td>
<td>Unpublished</td>
</tr>
<tr>
<td>S. pilosum</td>
<td>DAH 020</td>
<td>DQ241458</td>
<td>Henk & Vilgalys 2007</td>
</tr>
<tr>
<td>S. pinicola</td>
<td>DAH 013</td>
<td>DQ241459</td>
<td>Henk & Vilgalys 2007</td>
</tr>
<tr>
<td>S. pseudopedicellatum</td>
<td>DAH 044</td>
<td>DQ241460</td>
<td>Henk & Vilgalys 2007</td>
</tr>
<tr>
<td>S. ramorum</td>
<td>DAH 045a</td>
<td>DQ241450</td>
<td>Henk & Vilgalys 2007</td>
</tr>
<tr>
<td>S. septobasidioides</td>
<td>DAH 032</td>
<td>DQ241461</td>
<td>Henk & Vilgalys 2007</td>
</tr>
<tr>
<td>S. taxodii</td>
<td>DAH 194C</td>
<td>DQ241466</td>
<td>Henk & Vilgalys 2007</td>
</tr>
<tr>
<td>S. velaturn</td>
<td>DAH 024</td>
<td>DQ241467</td>
<td>Henk & Vilgalys 2007</td>
</tr>
<tr>
<td>S. westonii</td>
<td>DAH FP2001</td>
<td>DQ241468</td>
<td>Henk & Vilgalys 2007</td>
</tr>
<tr>
<td>S. wilsonianum</td>
<td>DAH 037</td>
<td>DQ241469</td>
<td>Henk & Vilgalys 2007</td>
</tr>
</tbody>
</table>
and 100 ml elution buffer was added to the middle of adsorbed film to elute the genomic DNA. ITS region was amplified with primer pairs ITS5 and ITS4 (White & al. 1990). The PCR procedure was as follows: initial denaturation at 95 °C for 3 min; followed by 35 cycles of 94 °C for 40 s, 58 °C for 45 s, and 72 °C for 1 min; and a final extension of 72 °C for 10 min. The PCR products were purified and directly sequenced at Kunming Tsingke Biological Technology Limited Company. All newly generated sequences were deposited at GenBank (Table 1).

Sequencer 4.6 was used to edit the DNA sequence. Sequences were aligned in MAFFT 6 (Katoh & Toh 2008; http://mafft.cbrc.jp/alignment/server/) using the “G-INS-I” strategy and manually adjusted in BioEdit (Hall 1999). The sequence alignment was deposited in TreeBase (submission ID 23722). Sequences of Helicobasidium mompa and Pachnocybe ferruginea Berk. obtained from GenBank were used as outgroups to root trees following Henk & Vilgalys (2007) in the ITS analysis (Fig. 1).

Maximum parsimony analysis was applied to the ITS dataset sequences. Approaches to phylogenetic analysis followed Zhao & al. (2013) and Song & al. (2016), and the tree construction procedure was performed in PAUP* version 4.0b10 (Swofford 2002). All characters were equally weighted, and gaps were treated as missing data. Trees were inferred using the heuristic search option with TBR+G branch swapping and 1000 random sequence additions. Max-trees were set to 5000, branches of zero length were collapsed and all parsimonious trees were saved. Clade robustness was assessed using a bootstrap (BP) analysis with 1000 replicates (Felsenstein 1985). Descriptive tree statistics tree length (TL), consistency index (CI), retention index (RI), rescaled consistency index (RC), and homoplasy index (HI) were calculated for each Maximum Parsimonious Tree (MPT) generated. Sequences were also analyzed using Maximum Likelihood (ML) with RAxML-HPC2 on Abe through the Cipres Science Gateway (www.phylo.org; Miller & al. 2009). Branch support (BS) for ML analysis with GTR+G+I model of site substitution including estimation of Gamma-distributed rate heterogeneity and a proportion of invariant sites. The branch support was evaluated with bootstrapping method of 1000 replicates.

MrModeltest 2.3 (Posada & Crandall 1998; Nylander 2004) was used to determine the best-fit evolution model for each data set for Bayesian inference (BI). Bayesian inference was calculated with MrBayes3.1.2 with a general time reversible (GTR+G+I) model of DNA substitution and a gamma distribution rate variation across sites (Ronquist & Huelsenbeck 2003). Four Markov chains were run for 2 runs from random starting trees for 3 million generations (Fig. 1) and trees were sampled every 100 generations. The first one-fourth generations were discarded as burn-in. A majority rule consensus tree of all remaining trees was calculated. Branches were considered as significantly supported if they received maximum likelihood bootstrap (ML) >70%, maximum parsimony bootstrap (MP) >50%, or Bayesian posterior probabilities (PP) >0.95.
Fig. 1. Maximum Parsimony strict consensus tree illustrating the phylogeny of *Septobasidium aquilariae* and related species in *Septobasidium* based on ITS sequences, with *Helicobasidium mompa* and *Pachnocybe ferruginea* as outgroup. Branches are labeled with maximum likelihood bootstrap >70%, maximum parsimony bootstrap >50% and Bayesian posterior probabilities >0.95.

Phylogeny

The ITS dataset included sequences from 34 fungal specimens representing 29 species. The dataset had an aligned length of 617 characters, of which 315 are constant, 106 are variable and parsimony-uninformative, and 196 are parsimony-informative. Maximum parsimony analysis yielded 12
equally parsimonious trees (TL = 1143, CI = 0.434, HI = 0.566, RI = 0.454, RC = 0.197). Best model for the ITS dataset estimated and applied in the Bayesian analysis: GTR+I+G, lset nst = 6, rates = invgamma; prset statefreqpr = dirichlet (1,1,1,1). Bayesian analysis and ML analysis resulted in a similar topology as MP analysis, with an average standard deviation of split frequencies = 0.008724 (BI).

The Maximum Parsimony strict consensus tree (Fig. 1) inferred from ITS sequences within Septobasidium demonstrated that the new species formed a monophyletic lineage with strong support (ML = 100%; MP = 100%; PP = 1) and formed a sister clade with “S. cokeri” Couch [nom. inval.] and forming a group with S. hainanense C.X. Lu & L. Guo and S. maesae C.X. Lu & L. Guo.

Taxonomy

Septobasidium aquilariae C.L. Zhao, sp. nov.

Figs 2, 3

MB 830332

Differs from “*Septobasidium cokeri*” by its slightly brown to brown hymenial surface upon drying and its growth on *Aquilaria sinensis*.

Type: China. Yunnan Province: Xishuangbanna, Jinghong, Menghai County, in association with *Pseudaulacaspis* sp. on *Aquilaria sinensis*, 31 May 2018, CL Zhao 6611 (Holotype, SWFC 006611; MK802140).

Etymology: The specific epithet *aquilariae* (Lat.) refers to the plant genus on which all of the specimens were collected.

Basidiomata on branches, annual, resupinate, hard to separate from substrate, becoming coriaceous upon drying, up to 8 cm long, up to 4 cm wide, up to 1 mm thick. Hymenial surface smooth, cream to pale brown when fresh, slightly brown to brown upon drying. Sterile margin indeterminate, white to cream.

Hyphal structure monomitic; generative hyphae with simple septa, pale brown, thick-walled. In section 800–1000 μm thick; subiculum pale brown, 50–150 μm thick; pillars brown, 300–400 μm high, 50–100 μm wide; hyphal layer pale brown, 150–350 μm thick; hymenium hyaline or brown, 70–100 μm thick.

Basidia arising directly from the hyphae without a protobasidial cell, cylindrical, curved, or straight, hyaline, 2–4-celled, 15–26.5 × 4–6 μm.

Basidiospores reniform, hyaline, thin-walled, smooth, (10–)11–19(–20.5) × (3.5–)4–7.5(–8) μm, L = 14.15 μm, W = 6.12 μm, Q = 1.81–2.52 (n = 150/5). Haustoria consisting of irregularly coiled hyphae.

Fig. 2. Septobasidium aquilariae (holotype, SWFC 006611). A, B. Basidiomata on branch; C. Sections of basidiomata; D. Basidiospore; E. Basidia; F. Hyphae; G. Haustoria. Scale bars: a = 5 cm; b = 2 cm; c–g = 10 μm.
Habitat and distribution growing in association with *Pseudaulacaspis* sp. on *Aquilaria sinensis* (Lour.) Spreng. (*Thymelaeaceae*).
Additional specimens examined: CHINA. YUNNAN PROVINCE. Xishuangbanna: Jinghong, Menghai County, in association with *Pseudaulacaspis* sp. on *Aquilaria sinensis*, 31 May 2018, CL.Zhao 6610 (SWFC 006610; MK802139); CL.Zhao 6612 (SWFC 006612; MK802141); CL.Zhao 6613 (SWFC 006613; MK802142); CL.Zhao 6614 (SWFC 006614; MK802143).

Discussion

In the present study, a new species, *Septobasidium aquilariae*, is described based on phylogenetic analyses and morphological characters.

Phylogenetically, *S. aquilariae* is closely related to “*S. cokeri*,” *S. hainanense*, and *S. maesae* (Fig. 1). But morphologically “*S. cokeri*” differs from *S. aquilariae* by its pure white hymenial surface and restricted growth on *Quercus rubra* (Gómez & Henk 2004); *S. hainanense* differs in its purple hymenial surface and larger (25–36 × 7–13 µm) basidia (Lu & Guo 2010a); and *S. maesae* differs by its perennial basidiocarps peeled off after maturity and larger (28–55 × 7.5–11.5 µm) basidia (Lu & Guo 2009a).

Several species found in China are morphologically similar to *S. aquilariae*. *Septobasidium broussonetiae* C.X. Lu & al. is distinguished by its cracking basidiocarps and growth on *Broussonetia papyrifera* (Lu & al. 2010); *S. brunneum* Wei Li bis & L. Guo differs in its purple-brown hymenial surface with many cracks and growth on *Eurya* sp. (Li & Guo 2014); *S. capparis* S.Z. Chen & L. Guo differs by its thicker (≤2 mm thick) section and larger (45–56 × 8–12 µm) basidia (Chen & Guo 2012); *S. euryae-groffii* C.X. Lu & L. Guo is distinguished by its cinnamon to chestnut brown hymenium and growth on *Eurya graffii* (Lu & Guo 2010b); *S. fissuratum* Wei Li bis & L. Guo differs in its larger (32–45 × 6–9 µm) basidia and growth on *Castanea* sp. (Li & Guo 2013); *S. gaoligongense* C.X. Lu & L. Guo differs in its dark brown hymenium and thinner (260–580 µm) section (Lu & Guo 2010b).

Septobasidium guangxiense Wei Li bis & L. Guo differs from *S. aquilariae* in its yellowish brown hymenium with numerous fissures at maturity and larger (27–38 × 5–10 µm) basidia (Li & Guo 2014); *S. hoveniae* Wei Li bis & al. differs in its cinnamon-brown hymenium and growth on *Hovenia acerba* (Li & al. 2013); *S. polygoni* C.X. Lu & L. Guo differs in its white to cinnamon-brown hymenium and growth on *Polygonum campanulatum* (Lu & Guo 2010b); *S. reevesiae* S.Z. Chen & L. Guo differs in its thicker (1.65–2.20 mm) section and larger (37–55 × 8–13 µm) basidia and growth on *Reevesia longipetiolata* (Chen & Guo 2012); and *S. transversum* Wei Li bis & L. Guo differs in its cinnamon-brown basidiomata, its transverse
layer at the pillar bases, and larger (42–60 × 9–16 μm) basidia (Li & Guo 2014).

The diversity of Septobasidium is rich in China and 57 species have been reported, especially in subtropics and tropics (Lu & Guo 2009a,b, 2010a,b, 2011; Lu & al. 2010; Chen & Guo 2011, 2012; Li & Guo 2013, 2014). Several Septobasidium species have been described from Yunnan Province (Lu & Guo 2010b, 2011; Li & Guo 2013), and our new species, S. aquilariae, is also from Yunnan Province. It is expected that new taxa will be found after further research.

Acknowledgments
Special thanks are due to Dr. Sana Jabeen (Division of Science and Technology, University of Education, Lahore, Pakistan) and Dr. Jie Song (Research Institute of Tropical Forestry, Chinese Academy of Forestry, P.R. China) who reviewed the manuscript. The research is supported by the National Natural Science Foundation of China (31700023), Yunnan Agricultural Foundation Projects (2017FG001-042), Science Foundation of Southwest Forestry University (Project No. 111715) and the Science Foundation of Education Department in Yunnan (2018JS326).

Literature cited

Lu CX, Guo L, Wei JG, Li JB. 2010. Two new species of Septobasidium (Septobasidiaceae) from southern China. Mycotaxon 111: 269–274. https://doi.org/10.5248/111.269

